The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 54 of 4078
Back to Result List

Dynamics of oscillators globally coupled via two mean fields

  • Many studies of synchronization properties of coupled oscillators, based on the classical Kuramoto approach, focus on ensembles coupled via a mean field. Here we introduce a setup of Kuramoto-type phase oscillators coupled via two mean fields. We derive stability properties of the incoherent state and find traveling wave solutions with different locking patterns; stability properties of these waves are found numerically. Mostly nontrivial states appear when the two fields compete, i.e. one tends to synchronize oscillators while the other one desynchronizes them. Here we identify normal branches which bifurcate from the incoherent state in a usual way, and anomalous branches, appearance of which cannot be described as a bifurcation. Furthermore, hybrid branches combining properties of both are described. In the situations where no stable traveling wave exists, modulated quasiperiodic in time dynamics is observed. Our results indicate that a competition between two coupling channels can lead to a complex system behavior, providing aMany studies of synchronization properties of coupled oscillators, based on the classical Kuramoto approach, focus on ensembles coupled via a mean field. Here we introduce a setup of Kuramoto-type phase oscillators coupled via two mean fields. We derive stability properties of the incoherent state and find traveling wave solutions with different locking patterns; stability properties of these waves are found numerically. Mostly nontrivial states appear when the two fields compete, i.e. one tends to synchronize oscillators while the other one desynchronizes them. Here we identify normal branches which bifurcate from the incoherent state in a usual way, and anomalous branches, appearance of which cannot be described as a bifurcation. Furthermore, hybrid branches combining properties of both are described. In the situations where no stable traveling wave exists, modulated quasiperiodic in time dynamics is observed. Our results indicate that a competition between two coupling channels can lead to a complex system behavior, providing a potential generalized framework for understanding of complex phenomena in natural oscillatory systems.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Xiyun Zhang, Arkadij PikovskijORCiDGND, Zonghua Liu
DOI:https://doi.org/10.1038/s41598-017-02283-1
ISSN:2045-2322
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/28522836
Title of parent work (English):Scientific reports
Publisher:Nature Publ. Group
Place of publishing:London
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Volume:7
Number of pages:16
Funding institution:programme under the Marie Sklodowska-Curie [642563]; NNSF of China [11375066]; Russian Science Foundation [14-12-00811]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.