• Treffer 64 von 262
Zurück zur Trefferliste

Copepod carcasses as microbial hot spots for pelagic denitrification

  • Copepods are exposed to a high non-predatory mortality and their decomposing carcasses act as microniches with intensified microbial activity. Sinking carcasses could thereby represent anoxic microenvironment sustaining anaerobic microbial pathways in otherwise oxic water columns. Using non-invasive O-2 imaging, we document that carcasses of Calanus finmarchicus had an anoxic interior even at fully air-saturated ambient O-2 level. The extent of anoxia gradually expanded with decreasing ambient O-2 levels. Concurrent microbial sampling showed the expression of nitrite reductase genes (nirS) in all investigated carcass samples and thereby documented the potential for microbial denitrification in carcasses. The nirS gene was occasionally expressed in live copepods, but not as consistently as in carcasses. Incubations of sinking carcasses in (15)NO3-amended seawater demonstrated denitrification, of which on average 34%+/- 17% (n=28) was sustained by nitrification. However, the activity was highly variable and was strongly dependent on theCopepods are exposed to a high non-predatory mortality and their decomposing carcasses act as microniches with intensified microbial activity. Sinking carcasses could thereby represent anoxic microenvironment sustaining anaerobic microbial pathways in otherwise oxic water columns. Using non-invasive O-2 imaging, we document that carcasses of Calanus finmarchicus had an anoxic interior even at fully air-saturated ambient O-2 level. The extent of anoxia gradually expanded with decreasing ambient O-2 levels. Concurrent microbial sampling showed the expression of nitrite reductase genes (nirS) in all investigated carcass samples and thereby documented the potential for microbial denitrification in carcasses. The nirS gene was occasionally expressed in live copepods, but not as consistently as in carcasses. Incubations of sinking carcasses in (15)NO3-amended seawater demonstrated denitrification, of which on average 34%+/- 17% (n=28) was sustained by nitrification. However, the activity was highly variable and was strongly dependent on the ambient O-2 levels. While denitrification was present even at air-saturation (302 mol L-1), the average carcass specific activity increased several orders of magnitude to approximate to 1 nmol d(-1) at 20% air-saturation (55 mol O-2 L-1) at an ambient temperature of 7 degrees C. Sinking carcasses of C. finmarchicus therefore represent hotspots of pelagic denitrification, but the quantitative importance as a sink for bioavailable nitrogen is strongly dependent on the ambient O-2 level. The importance of carcass associated denitrification could be highly significant in O-2 depleted environments such as Oxygen Minimum Zones (OMZ).zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Ronnie N. Glud, Hans-Peter GrossartORCiDGND, Morten Larsen, Kam W. Tang, Kristine E. Arendt, Soren Rysgaard, Bo Thamdrup, Torkel Gissel Nielsen
DOI:https://doi.org/10.1002/lno.10149
ISSN:0024-3590
ISSN:1939-5590
Titel des übergeordneten Werks (Englisch):Limnology and oceanography
Verlag:Wiley-Blackwell
Verlagsort:Hoboken
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2015
Erscheinungsjahr:2015
Datum der Freischaltung:27.03.2017
Band:60
Ausgabe:6
Seitenanzahl:11
Erste Seite:2026
Letzte Seite:2036
Fördernde Institution:Danish Council for Independent Research [95-306-23437, 0602-02276B]; Villum Foundation [95-306-13881]; Commission for Scientific Research in Greenland [GCRC6507, 6505]; European Research Council [ERC-2010-AdG20100224]; Danish National Research Foundation [DNRF53]; board of the Danish Centre for Marine Research, DCH (BOFYGO); German Science Foundation (DFG) [GR1540/20-1]; Humboldt Research Fellowship
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.