• search hit 85 of 260
Back to Result List

Reducing Voltage Losses in Cascade Organic Solar Cells while Maintaining High External Quantum Efficiencies

  • High photon energy losses limit the open-circuit voltage (V-OC) and power conversion efficiency of organic solar cells (OSCs). In this work, an optimization route is presented which increases the V-OC by reducing the interfacial area between donor (D) and acceptor (A). This optimization route concerns a cascade device architecture in which the introduction of discontinuous interlayers between alpha-sexithiophene (alpha-6T) (D) and chloroboron subnaphthalocyanine (SubNc) (A) increases the V-OC of an alpha-6T/SubNc/SubPc fullerene-free cascade OSC from 0.98 V to 1.16 V. This increase of 0.18 V is attributed solely to the suppression of nonradiative recombination at the D-A interface. By accurately measuring the optical gap (E-opt) and the energy of the charge-transfer state (E-CT) of the studied OSC, a detailed analysis of the overall voltage losses is performed. E-opt - qV(OC) losses of 0.58 eV, which are among the lowest observed for OSCs, are obtained. Most importantly, for the V-OC-optimized devices, the low-energy (700 nm) externalHigh photon energy losses limit the open-circuit voltage (V-OC) and power conversion efficiency of organic solar cells (OSCs). In this work, an optimization route is presented which increases the V-OC by reducing the interfacial area between donor (D) and acceptor (A). This optimization route concerns a cascade device architecture in which the introduction of discontinuous interlayers between alpha-sexithiophene (alpha-6T) (D) and chloroboron subnaphthalocyanine (SubNc) (A) increases the V-OC of an alpha-6T/SubNc/SubPc fullerene-free cascade OSC from 0.98 V to 1.16 V. This increase of 0.18 V is attributed solely to the suppression of nonradiative recombination at the D-A interface. By accurately measuring the optical gap (E-opt) and the energy of the charge-transfer state (E-CT) of the studied OSC, a detailed analysis of the overall voltage losses is performed. E-opt - qV(OC) losses of 0.58 eV, which are among the lowest observed for OSCs, are obtained. Most importantly, for the V-OC-optimized devices, the low-energy (700 nm) external quantum efficiency (EQE) peak remains high at 79%, despite a minimal driving force for charge separation of less than 10 meV. This work shows that low-voltage losses can be combined with a high EQE in organic photovoltaic devices.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Vasileios C. Nikolis, Johannes Benduhn, Felix Holzmueller, Fortunato Piersimoni, Matthias Lau, Olaf Zeika, Dieter NeherORCiDGND, Christian Koerner, Donato SpoltoreORCiD, Koen Vandewal
DOI:https://doi.org/10.1002/aenm.201700855
ISSN:1614-6832
ISSN:1614-6840
Title of parent work (English):dvanced energy materials
Publisher:Wiley-VCH
Place of publishing:Weinheim
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:energy losses; nonradiative recombination; open-circuit voltage; organic solar cells; voltage losses
Volume:7
Number of pages:8
First page:122
Last Page:136
Funding institution:German Federal Ministry of Education and Research (BMBF) [FKZ 03IPT602X]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.