• Treffer 77 von 189
Zurück zur Trefferliste

Structure-driven homology pairing of chromatin fibers the role of electrostatics and protein-induced bridging

  • Chromatin domains formed in vivo are characterized by different types of 3D organization of interconnected nucleosomes and architectural proteins. Here, we quantitatively test a hypothesis that the similarities in the structure of chromatin fibers (which we call "structural homology") can affect their mutual electrostatic and protein-mediated bridging interactions. For example, highly repetitive DNA sequences in heterochromatic regions can position nucleosomes so that preferred inter-nucleosomal distances are preserved on the surfaces of neighboring fibers. On the contrary, the segments of chromatin fiber formed on unrelated DNA sequences have different geometrical parameters and lack structural complementarity pivotal for stable association and cohesion. Furthermore, specific functional elements such as insulator regions, transcription start and termination sites, and replication origins are characterized by strong nucleosome ordering that might induce structure-driven iterations of chromatin fibers. We propose that shape-specificChromatin domains formed in vivo are characterized by different types of 3D organization of interconnected nucleosomes and architectural proteins. Here, we quantitatively test a hypothesis that the similarities in the structure of chromatin fibers (which we call "structural homology") can affect their mutual electrostatic and protein-mediated bridging interactions. For example, highly repetitive DNA sequences in heterochromatic regions can position nucleosomes so that preferred inter-nucleosomal distances are preserved on the surfaces of neighboring fibers. On the contrary, the segments of chromatin fiber formed on unrelated DNA sequences have different geometrical parameters and lack structural complementarity pivotal for stable association and cohesion. Furthermore, specific functional elements such as insulator regions, transcription start and termination sites, and replication origins are characterized by strong nucleosome ordering that might induce structure-driven iterations of chromatin fibers. We propose that shape-specific protein-bridging interactions facilitate long-range pairing of chromatin fragments, while for closely-juxtaposed fibers electrostatic forces can in addition yield fine-tuned structure-specific recognition and pairing. These pairing effects can account for some features observed for mitotic and inter-phase chromatins.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Andrey G. CherstvyORCiD, V. B. Teif
DOI:https://doi.org/10.1007/s10867-012-9294-4
ISSN:0092-0606
ISSN:1573-0689
Titel des übergeordneten Werks (Englisch):Journal of biological physics : emphasizing physical principles in biological research ; an international journal for the formulation and application of mathematical models in the biological sciences
Verlag:Springer
Verlagsort:Dordrecht
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2013
Erscheinungsjahr:2013
Datum der Freischaltung:26.03.2017
Freies Schlagwort / Tag:Chromatin pairing; Electrostatics; Homology; Long-range bridging; Shape recognition
Band:39
Ausgabe:3
Seitenanzahl:23
Erste Seite:363
Letzte Seite:385
Fördernde Institution:Deutsche Forschungsgemeinschaft, DFG [CH 707/5-1]; DKFZ Intramural Grant; Heidelberg Center for Modelling and Simulation in the Biosciences (BIOMS)
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.