• search hit 44 of 269
Back to Result List

Evaluating the Influence of Plate Boundary Friction and Mantle Viscosity on Plate Velocities

  • Lithospheric plates move over the low-viscosity asthenosphere balancing several forces, which generate plate motions. We use a global 3-D lithosphere-asthenosphere model (SLIM3D) with visco-elasto-plastic rheology coupled to a spectral model of mantle flow at 300 km depth to quantify the influence of intra-plate friction and asthenospheric viscosity on plate velocities. We account for the brittle-ductile deformation at plate boundaries (yield stress) using a plate boundary friction coefficient to predict the present-day plate motion and net rotation of the lithospheric plates. Previous modeling studies have suggested that small friction coefficients (mu < 0.1, yield stress similar to 100 MPa) can lead to plate tectonics in models of mantle convection. Here we show that in order to match the observed present-day plate motion and net rotation, the frictional parameter must be less than 0.05. We obtain a good fit with the magnitude and orientation of the observed plate velocities (NUVEL-1A) in a no-net-rotation (NNR) reference frame withLithospheric plates move over the low-viscosity asthenosphere balancing several forces, which generate plate motions. We use a global 3-D lithosphere-asthenosphere model (SLIM3D) with visco-elasto-plastic rheology coupled to a spectral model of mantle flow at 300 km depth to quantify the influence of intra-plate friction and asthenospheric viscosity on plate velocities. We account for the brittle-ductile deformation at plate boundaries (yield stress) using a plate boundary friction coefficient to predict the present-day plate motion and net rotation of the lithospheric plates. Previous modeling studies have suggested that small friction coefficients (mu < 0.1, yield stress similar to 100 MPa) can lead to plate tectonics in models of mantle convection. Here we show that in order to match the observed present-day plate motion and net rotation, the frictional parameter must be less than 0.05. We obtain a good fit with the magnitude and orientation of the observed plate velocities (NUVEL-1A) in a no-net-rotation (NNR) reference frame with mu < 0.05 and a minimum asthenosphere viscosity of similar to 5 . 10(19) Pas to 10(20) Pas. Our estimates of net rotation (NR) of the lith-osphere suggest that amplitudes similar to 0.1-0.2 (degrees/Ma), similar to most observation-based estimates, can be obtained with asthenosphere viscosity cutoff values of similar to 10(19) Pas to 5 . 10(19) Pas and friction coefficients mu < 0.05.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Anthony Osei TutuORCiD, Stephan Vladimir SobolevORCiDGND, Bernhard SteinbergerORCiDGND, A. A. Popov, Irina RogozhinaORCiD
DOI:https://doi.org/10.1002/2017GC007112
ISSN:1525-2027
Title of parent work (English):Geochemistry, geophysics, geosystems
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Date of first publication:2018/02/01
Publication year:2018
Release date:2022/01/12
Volume:19
Issue:3
Number of pages:25
First page:642
Last Page:666
Funding institution:Helmholtz graduate school GeoSim; Helmholtz Centre Potsdam-GFZ German Research Centre for Geosciences; BMBF German Climate Modeling Initiative PalMod
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.