The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 142 of 2817
Back to Result List

Influence of depolymerases and lipases on the degradation of polyhydroxyalkanoates determined in Langmuir degradation studies

  • Microbially produced polyhydroxyalkanoates (PHAs) are polyesters that are degradable by naturally occurring enzymes. Albeit PHAs degrade slowly when implanted in animal models, their disintegration is faster compared to abiotic hydrolysis under simulated physiological environments. Ultrathin Langmuir-Blodgett (LB) films are used as models for fast in vitro degradation testing, to predict enzymatically catalyzed hydrolysis of PHAs in vivo. The activity of mammalian enzymes secreted by pancreas and liver, potentially involved in biomaterials degradation, along with microbial hydrolases is tested toward LB-films of two model PHAs, poly(3-R-hydroxybutyrate) (PHB) and poly[(3-R-hydroxyoctanoate)-co-(3-R-hydroxyhexanoate)] (PHOHHx). A specific PHA depolymerase fromStreptomyces exfoliatus, used as a positive control, is shown to hydrolyze LB-films of both polymers regardless of their side-chain-length and phase morphology. From amorphous PHB and PHOHHx, approximate to 80% is eroded in few hours, while mass loss for semicrystalline PHB isMicrobially produced polyhydroxyalkanoates (PHAs) are polyesters that are degradable by naturally occurring enzymes. Albeit PHAs degrade slowly when implanted in animal models, their disintegration is faster compared to abiotic hydrolysis under simulated physiological environments. Ultrathin Langmuir-Blodgett (LB) films are used as models for fast in vitro degradation testing, to predict enzymatically catalyzed hydrolysis of PHAs in vivo. The activity of mammalian enzymes secreted by pancreas and liver, potentially involved in biomaterials degradation, along with microbial hydrolases is tested toward LB-films of two model PHAs, poly(3-R-hydroxybutyrate) (PHB) and poly[(3-R-hydroxyoctanoate)-co-(3-R-hydroxyhexanoate)] (PHOHHx). A specific PHA depolymerase fromStreptomyces exfoliatus, used as a positive control, is shown to hydrolyze LB-films of both polymers regardless of their side-chain-length and phase morphology. From amorphous PHB and PHOHHx, approximate to 80% is eroded in few hours, while mass loss for semicrystalline PHB is 25%. Surface potential and interfacial rheology measurements show that material dissolution is consistent with a random-chain-scission mechanism. Degradation-induced crystallization of semicrystalline PHB LB-films is also observed. Meanwhile, the surface and the mechanical properties of both LB-films remain intact throughout the experiments with lipases and other microbial hydrolases, suggesting that non-enzymatic hydrolysis could be the predominant factor for acceleration of PHAs degradation in vivo.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Natalia A. TarazonaORCiD, Rainhard Gabriel MachatschekORCiDGND, Andreas LendleinORCiDGND
DOI:https://doi.org/10.1002/admi.202000872
ISSN:2196-7350
Title of parent work (English):Advanced materials interfaces
Publisher:Wiley
Place of publishing:Hoboken
Publication type:Article
Language:English
Date of first publication:2020/07/23
Publication year:2020
Release date:2023/11/01
Tag:Langmuir thin-films; PHA-depolymerases; enzymatic-degradation; lipases; polyhydroxyalkanoates (PHA)
Volume:7
Issue:17
Article number:2000872
Number of pages:9
Funding institution:Helmholtz Association Helmholtz Association
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.