The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 77 of 380
Back to Result List

Redox signalling in plants

  • Once proteins are synthesized, they can additionally be modified by post-translational modifications (PTMs). Proteins containing reactive cysteine thiols, stabilized in their deprotonated form due to their local environment as thiolates (RS-), serve as redox sensors by undergoing a multitude of oxidative PTMs (Ox-PTMs). Ox-PTMs such as S-nitrosylation or formation of inter- or intra-disulfide bridges induce functional changes in these proteins. Proteins containing cysteines, whose thiol oxidation state regulates their functions, belong to the so-called redoxome. Such Ox-PTMs are controlled by site-specific cellular events that play a crucial role in protein regulation, affecting enzyme catalytic sites, ligand binding affinity, protein-protein interactions or protein stability. Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in all photosynthetic organisms. Therefore, studying PTMs will remain crucial for understanding plant adaptation to external stimuli likeOnce proteins are synthesized, they can additionally be modified by post-translational modifications (PTMs). Proteins containing reactive cysteine thiols, stabilized in their deprotonated form due to their local environment as thiolates (RS-), serve as redox sensors by undergoing a multitude of oxidative PTMs (Ox-PTMs). Ox-PTMs such as S-nitrosylation or formation of inter- or intra-disulfide bridges induce functional changes in these proteins. Proteins containing cysteines, whose thiol oxidation state regulates their functions, belong to the so-called redoxome. Such Ox-PTMs are controlled by site-specific cellular events that play a crucial role in protein regulation, affecting enzyme catalytic sites, ligand binding affinity, protein-protein interactions or protein stability. Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in all photosynthetic organisms. Therefore, studying PTMs will remain crucial for understanding plant adaptation to external stimuli like fluctuating light conditions. Optimizing methods suitable for studying plants Ox-PTMs is of high importance for elucidation of the redoxome in plants. This study focusses on thiol modifications occurring in plant and provides novel insight into in vivo redoxome of Arabidopsis thaliana in response to light vs. dark. This was achieved by utilizing a resin-assisted thiol enrichment approach. Furthermore, confirmation of candidates on the single protein level was carried out by a differential labelling approach. The thiols and disulfides were differentially labelled, and the protein levels were detected using immunoblot analysis. Further analysis was focused on light-reduced proteins. By the enrichment approach many well studied redox-regulated proteins were identified. Amongst those were fructose 1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) which have previously been described as thioredoxin system targeted enzymes. The redox regulated proteins identified in the current study were compared to several published, independent results showing redox regulated proteins in Arabidopsis leaves, root, mitochondria and specifically S-nitrosylated proteins. These proteins were excluded as potential new candidates but remain as a proof-of-concept to the enrichment experiments to be effective. Additionally, CSP41A and CSP41B proteins, which emerged from this study as potential targets of redox-regulation, were analyzed by Ribo-Seq. The active translatome study of csp41a mutant vs. wild-type showed most of the significant changes at end of the night, similarly as csp41b. Yet, in both mutants only several chloroplast-encoded genes were altered. Further studies of CSP41A and CSP41B proteins are needed to reveal their functions and elucidate the role of redox regulation of these proteins.show moreshow less
  • Wenn Proteine synthetisiert sind, können sie zusätzlich noch post-translationelle Modifikationen (PTM) aufweisen. Proteine, die wegen ihres lokalen Umfeldes reaktive Cysteinthiole in ihrer stabilen deprotonierten Thiolat-Form aufweisen, dienen als Redoxsensoren indem sie eine Vielzahl von oxidativen PTMs (Ox-PTMs) enthalten können. Ox-PTMs wie die S-Nitrosylierung oder die Bildung von Inter- oder Intradisulfidbrücken induzieren funktionelle Veränderungen in diesen Proteinen. Cystein-haltige Proteine, deren Funktion durch diese Thioloxidierung gesteuert werden, gehören zu dem so genannten Redoxom. Die Ox-PTMs werden durch ortsspezifische zelluläre Prozesse gesteuert, die eine essentielle Rolle bei der Proteinregulation spielen und welche das katalytische Zentrum, die Ligandenbindungsaffinität, Protein-Protein-Interaktionen oder die Proteinstabilität beeinflussen können. Die umkehrbare Proteinthioloxidierung ist ein essentieller regulatorischer Mechanismus in der Photosynthese, dem Metabolismus und der Genexpression photosynthetischerWenn Proteine synthetisiert sind, können sie zusätzlich noch post-translationelle Modifikationen (PTM) aufweisen. Proteine, die wegen ihres lokalen Umfeldes reaktive Cysteinthiole in ihrer stabilen deprotonierten Thiolat-Form aufweisen, dienen als Redoxsensoren indem sie eine Vielzahl von oxidativen PTMs (Ox-PTMs) enthalten können. Ox-PTMs wie die S-Nitrosylierung oder die Bildung von Inter- oder Intradisulfidbrücken induzieren funktionelle Veränderungen in diesen Proteinen. Cystein-haltige Proteine, deren Funktion durch diese Thioloxidierung gesteuert werden, gehören zu dem so genannten Redoxom. Die Ox-PTMs werden durch ortsspezifische zelluläre Prozesse gesteuert, die eine essentielle Rolle bei der Proteinregulation spielen und welche das katalytische Zentrum, die Ligandenbindungsaffinität, Protein-Protein-Interaktionen oder die Proteinstabilität beeinflussen können. Die umkehrbare Proteinthioloxidierung ist ein essentieller regulatorischer Mechanismus in der Photosynthese, dem Metabolismus und der Genexpression photosynthetischer Organismen. Es ist demnach wichtig PTMs zu untersuchen, um zu verstehen wie sich Pflanzen an externe Stimuli wie das Licht anpassen können. Es ist von großer Bedeutung für das Redoxom-Forschungsgebiet Methoden zur Untersuchung von pflanzlichen Ox-PTMs zu verbessern. Die vorliegende Arbeit konzentriert sich auf Thiolveränderungen, die in Pflanzen auftreten, und gibt einen Einblick in das in vivo Redoxom von Arabidopsis thaliana als Reaktion auf Licht oder Dunkelheit. Dieses wurde ermöglicht durch eine auf Harz-basierende Thiol-Anreicherung. Darüber hinaus konnten Kandidaten auf dem Einzelproteinlevel durch eine Differentialmarkierungsmethode bestätigt werden. Thiole und Disulfide wurden unterschiedlich markiert und die Proteine durch spezifische Antikörper mittels Proteinblotanalyse erkannt. Weitere Analysen fokussierten sich auf im Licht reduzierte Proteine. Durch die Anreicherungsmethode konnten viele bereits untersuchte redox-regulierte Proteine identifiziert werden. Unter diesen waren unter anderem die Fruktose-1,6-Bisphosphatase (FBPase) sowie die Seduheptulose-1,7-Bisphosphatase (SBPase), welche als Thioredoxin-gesteuerte Enzyme beschrieben sind. Die redox-regulierten Proteine, die in dieser Studie identifiziert werden konnten, wurden mit veröffentlichten unabhängigen Ergebnissen verglichen und dieses führte zu einer Vielzahl an redox-regulierten Proteinen in Arabidopsisblättern, -Wurzeln und -Mitochondrien sowie S-nitrosylierten Proteinen. Diese Proteine wurden zwar als neue potentielle Kandidaten ausgeschlossen, zeigten allerdings die Effektivität der Anreicherungsmethode. Darüber hinaus wurden die Proteine CSP41 A and CSP41 B, welche in dieser Studie als potentielle Ziele der Redox-Regulation identifiziert wurden, durch Ribo-seq analysiert.show moreshow less

Download full text files

  • SHA-512:a51a98b0766513806303f27ca33719c5a1f3408f23bc210072d0a197f83679fe70ca20732f37528d55001f4fb7ba63230ebbb603a9ae0c8a2d83554845c0a8b1

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Beata SiemiatkowskaORCiD
URN:urn:nbn:de:kobv:517-opus4-489119
DOI:https://doi.org/10.25932/publishup-48911
translated title (German):Redoxsignalisierung in Pflanzen
Reviewer(s):Lee SweetloveORCiD, Iris FinkemeierORCiDGND, Mark StittORCiDGND
Supervisor(s):Mark Stitt
Publication type:Doctoral Thesis
Language:English
Date of first publication:2020/04/15
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/08/04
Release date:2021/04/15
Tag:Anreicherungsmethoden; Pflanzen; Redox; Signalübertragung; oxidative Proteinmodifikationen; posttranslationale Modifikationen
enrichments methods; oxidative protein modifications; plants; post-translational modifications; redox; signalling
Number of pages:127
RVK - Regensburg classification:WN 1400
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.