The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 71 of 380
Back to Result List

Reconstitution of molybdenum cofactor biosynthesis in giant vesicles

  • Bottom-up synthetic biology is used for the understanding of how a cell works. It is achieved through developing techniques to produce lipid-based vesicular structures as cellular mimics. The most common techniques used to produce cellular mimics or synthetic cells is through electroformation and swelling method. However, the abovementioned techniques cannot efficiently encapsulate macromolecules such as proteins, enzymes, DNA and even liposomes as synthetic organelles. This urges the need to develop new techniques that can circumvent this issue and make the artificial cell a reality where it is possible to imitate a eukaryotic cell through encapsulating macromolecules. In this thesis, the aim to construct a cell system using giant unilamellar vesicles (GUVs) to reconstitute the mitochondrial molybdenum cofactor biosynthetic pathway. This pathway is highly conserved among all life forms, and therefore is known for its biological significance in disorders induced through its malfunctioning. Furthermore, the pathway itself is aBottom-up synthetic biology is used for the understanding of how a cell works. It is achieved through developing techniques to produce lipid-based vesicular structures as cellular mimics. The most common techniques used to produce cellular mimics or synthetic cells is through electroformation and swelling method. However, the abovementioned techniques cannot efficiently encapsulate macromolecules such as proteins, enzymes, DNA and even liposomes as synthetic organelles. This urges the need to develop new techniques that can circumvent this issue and make the artificial cell a reality where it is possible to imitate a eukaryotic cell through encapsulating macromolecules. In this thesis, the aim to construct a cell system using giant unilamellar vesicles (GUVs) to reconstitute the mitochondrial molybdenum cofactor biosynthetic pathway. This pathway is highly conserved among all life forms, and therefore is known for its biological significance in disorders induced through its malfunctioning. Furthermore, the pathway itself is a multi-step enzymatic reaction that takes place in different compartments. Initially, GTP in the mitochondrial matrix is converted to cPMP in the presence of cPMP synthase. Further, produced cPMP is transported across the membrane to the cytosol, to be converted by MPT synthase into MPT. This pathway provides a possibility to address the general challenges faced in the development of a synthetic cell, to encapsulate large biomolecules with good efficiency and greater control and to evaluate the enzymatic reactions involved in the process. For this purpose, the emulsion-based technique was developed and optimised to allow rapid production of GUVs (~18 min) with high encapsulation efficiency (80%). This was made possible by optimizing various parameters such as density, type of oil, the impact of centrifugation speed/time, lipid concentration, pH, temperature, and emulsion droplet volume. Furthermore, the method was optimised in microtiter plates for direct experimentation and visualization after the GUV formation. Using this technique, the two steps - formation of cPMP from GTP and the formation of MPT from cPMP were encapsulated in different sets of GUVs to mimic the two compartments. Two independent fluorescence-based detection systems were established to confirm the successful encapsulation and conversion of the reactants. Alternatively, the enzymes produced using bacterial expression and measured. Following the successful encapsulation and evaluation of enzymatic reactions, cPMP transport across mitochondrial membrane has been mimicked using GUVs using a complex mitochondrial lipid composition. It was found that the cPMP interaction with the lipid bilayer results in transient pore-formation and leakage of internal contents. Overall, it can be concluded that in this thesis a novel technique has been optimised for fast production of functional synthetic cells. The individual enzymatic steps of the Moco biosynthetic pathway have successfully implemented and quantified within these cellular mimics.show moreshow less
  • Die synthetische Biologie wird in der von unten-nach-oben-Methode eingesetzt, um zu verstehen, wie eine Zelle funktioniert. Dafür werden Techniken zur Herstellung lipidbasierter vesikul rer Strukturen als zellul re Nachahmungen entwickelt. Die gebräuchlichste Technik zur Herstellung von Zellnachahmungen oder synthetischen Zellen ist die Elektroformations- und Schwellmethode. Diese Techniken können jedoch Makromoleküle wie Proteine, Enzyme, DNA und sogar Liposomen nicht effizient als synthetische Organellen einkapseln. Daher ist es dringend erforderlich, neue Techniken zu entwickeln, die dieses Problem umgehen und die künstliche Zelle zu einer Realität machen, in der es möglich ist, eine eukaryotische Zelle durch Einkapselung von Makromolekülen zu imitieren. Das Ziel dieser Arbeit war es, ein komplexes Zellensystemmodel zu konstruieren, bei dem riesige unilamellare Vesikel (GUVs) zur Rekonstruktion des mitochondrialen Molybd n-Kofaktor-Biosynthesewegs verwendet werden. Dieser Stoffwechselweg ist bei allen Lebensformen hochDie synthetische Biologie wird in der von unten-nach-oben-Methode eingesetzt, um zu verstehen, wie eine Zelle funktioniert. Dafür werden Techniken zur Herstellung lipidbasierter vesikul rer Strukturen als zellul re Nachahmungen entwickelt. Die gebräuchlichste Technik zur Herstellung von Zellnachahmungen oder synthetischen Zellen ist die Elektroformations- und Schwellmethode. Diese Techniken können jedoch Makromoleküle wie Proteine, Enzyme, DNA und sogar Liposomen nicht effizient als synthetische Organellen einkapseln. Daher ist es dringend erforderlich, neue Techniken zu entwickeln, die dieses Problem umgehen und die künstliche Zelle zu einer Realität machen, in der es möglich ist, eine eukaryotische Zelle durch Einkapselung von Makromolekülen zu imitieren. Das Ziel dieser Arbeit war es, ein komplexes Zellensystemmodel zu konstruieren, bei dem riesige unilamellare Vesikel (GUVs) zur Rekonstruktion des mitochondrialen Molybd n-Kofaktor-Biosynthesewegs verwendet werden. Dieser Stoffwechselweg ist bei allen Lebensformen hoch konserviert und daher aufgrund von St rungen, die durch Fehlfunktionen hervorgerufen werden, für seine biologische Bedeutung relevant. Darüber hinaus ist die Biosynthese selbst eine mehrstufige enzymatische Reaktion, die in verschiedenen Kompartimenten abläuft. Zunächst wird GTP in der mitochondrialen Matrix in Gegenwart von cPMP-Synthase zu cPMP umgewandelt. Anschlie end wird das produzierte cPMP über die Membran zum Zytosol transportiert, wo es von der MPT-Synthase in MPT umgewandelt wird. Dieser Biosyntheseweg bietet eine M glichkeit, den allgemeinen Herausforderungen bei der Entwicklung einer synthetischen Zelle zu begegnen, um große Biomoleküle mit guter Effizienz und Kontrolle zu verkapseln und die am Prozess beteiligten enzymatischen Reaktionen zu bewerten. Zu diesem Zweck wurde die emulsionsbasierte Technik entwickelt und optimiert, die eine schnelle Produktion von GUVs (~18 min) mit hoher Verkapselungseffizienz (80%) ermöglicht. M glich wurde dies durch die Optimierung verschiedener Parameter wie Dichte,  ltyp, Einfluss von Zentrifugationsgeschwindigkeit/-zeit, Lipidkonzentration, pH-Wert, Temperatur und Emulsionstropfenvolumen. Darüber hinaus wurde die Methode in Mikrotiterplatten für das direkte Experimentieren und die Visualisierung nach der GUV-Bildung optimiert. Mit dieser Technik wurden die beiden Schritte, die Bildung von cPMP aus GTP und die Bildung von MPT aus cPMP, in verschiedenen GUVs eingekapselt, um die beiden Kompartimente nachzuahmen. Zwei unabhängige fluoreszenzbasierte Detektionssysteme wurden eingerichtet, um die erfolgreiche Einkapselung und Umwandlung der Reaktanten zu best tigen. Alternativ wurden die Enzyme mittels bakterieller Expression produziert und gemessen. Nach der erfolgreichen Einkapselung und Auswertung der enzymatischen Reaktionen wurde der cPMP-Transport durch die mitochondriale Membran mit Hilfe von GUVs unter Verwendung einer komplexen mitochondrialen Lipidzusammensetzung nachgeahmt. Es wurde festgestellt, dass die cPMP-Wechselwirkung mit der Lipiddoppelschicht zu einer transienten Porenbildung und zum Auslaufen des inneren Inhalts führt. Insgesamt kann der Schluss gezogen werden, dass in dieser Arbeit eine neuartige Technik für die schnelle Herstellung funktioneller synthetischer Zellen optimiert wurde. Einzelne enzymatische Schritte des Moco-Biosynthesewegs wurden in diesen zellul ren Mimiken erfolgreich implementiert und quantifiziert.show moreshow less

Download full text files

  • moga_diss.pdfeng
    (44023KB)

    SHA-512:967ba91a01bdd0346e7575e5bbf883efc7c1ac356199138c7ac07845303b3c9e12f50b506a160cba05fa8e724ba1c6c232de124f2315fcc2aacf1a94980d465e

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Akanksha MogaORCiD
URN:urn:nbn:de:kobv:517-opus4-510167
DOI:https://doi.org/10.25932/publishup-51016
Supervisor(s):Silke Leimkühler
Publication type:Doctoral Thesis
Language:English
Date of first publication:2021/06/29
Publication year:2021
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2021/06/11
Release date:2021/06/29
Tag:Biochemie; Mikroskop
GUVs; Inverted emulsion-based method; Microscopy; Molybdenum cofactor biosynthetic
Number of pages:XIV, 148
RVK - Regensburg classification:WF 9741
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.