The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 71 of 2502
Back to Result List

Controlling the surface band gap in topological states of matter

  • In the present study, we employ the angle-resolved photoemission spectroscopy (ARPES) technique to study the electronic structure of topological states of matter. In particular, the so-called topological crystalline insulators (TCIs) Pb1-xSnxSe and Pb1-xSnxTe, and the Mn-doped Z2 topological insulators (TIs) Bi2Te3 and Bi2Se3. The Z2 class of strong topological insulators is protected by time-reversal symmetry and is characterized by an odd number of metallic Dirac type surface states in the surface Brillouin zone. The topological crystalline insulators on the other hand are protected by the individual crystal symmetries and exhibit an even number of Dirac cones. The topological properties of the lead tin chalcogenides topological crystalline insulators can be tuned by temperature and composition. Here, we demonstrate that Bi-doping of the Pb1-xSnxSe(111) epilayers induces a quantum phase transition from a topological crystalline insulator to a Z2 topological insulator. This occurs because Bi-doping lifts the fourfold valleyIn the present study, we employ the angle-resolved photoemission spectroscopy (ARPES) technique to study the electronic structure of topological states of matter. In particular, the so-called topological crystalline insulators (TCIs) Pb1-xSnxSe and Pb1-xSnxTe, and the Mn-doped Z2 topological insulators (TIs) Bi2Te3 and Bi2Se3. The Z2 class of strong topological insulators is protected by time-reversal symmetry and is characterized by an odd number of metallic Dirac type surface states in the surface Brillouin zone. The topological crystalline insulators on the other hand are protected by the individual crystal symmetries and exhibit an even number of Dirac cones. The topological properties of the lead tin chalcogenides topological crystalline insulators can be tuned by temperature and composition. Here, we demonstrate that Bi-doping of the Pb1-xSnxSe(111) epilayers induces a quantum phase transition from a topological crystalline insulator to a Z2 topological insulator. This occurs because Bi-doping lifts the fourfold valley degeneracy in the bulk. As a consequence a gap appears at ⌈¯, while the three Dirac cones at the M̅ points of the surface Brillouin zone remain intact. We interpret this new phase transition is caused by lattice distortion. Our findings extend the topological phase diagram enormously and make strong topological insulators switchable by distortions or electric field. In contrast, the bulk Bi doping of epitaxial Pb1-xSnxTe(111) films induces a giant Rashba splitting at the surface that can be tuned by the doping level. Tight binding calculations identify their origin as Fermi level pinning by trap states at the surface. Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE) which provide quantized edge states for lossless charge transport applications. The edge states are hosted by a magnetic energy gap at the Dirac point which has not been experimentally observed to date. Our low temperature ARPES studies unambiguously reveal the magnetic gap of Mn-doped Bi2Te3. Our analysis shows a five times larger gap size below the Tc than theoretically predicted. We assign this enhancement to a remarkable structure modification induced by Mn doping. Instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3quintuple layers is formed. This enhances the wave-function overlap and gives rise to a large magnetic gap. Mn-doped Bi2Se3 forms similar heterostructure, but only a nonmagnetic gap is observed in this system. This correlates with the difference in magnetic anisotropy due to the much larger spin-orbit interaction in Bi2Te3 compared to Bi2Se3. These findings provide crucial insights for pushing lossless transport in topological insulators towards room-temperature applications.show moreshow less
  • In der vorliegenden Studie verwenden wir die Methode der winkelaufgelösten Photoemissionsspektroskopie (ARPES) zur Untersuchung der elektronischen Struktur von topologischen Zuständen der Materie. Insbesondere die sogenannten topologischen kristallinen Isolatoren (TCI) Pb1-xSnxSe und Pb1-xSnxTe sowie die Mn-dotierten Z2 topologischen Isolatoren (TI) Bi2Te3 und Bi2Se3. Die Z2-Klasse der starken topologischen Isolatoren ist durch Zeitumkehrsymmetrie geschützt und durch eine ungerade Anzahl metallischer Dirac-Oberflächenzustände in der Oberflächenbrillouinzone gekennzeichnet. Die topologischen kristallinen Isolatoren hingegen sind durch einzelne Kristallsymmetrien geschützt und weisen eine gerade Anzahl von Dirac-Kegeln auf. Die topologischen Eigenschaften von Blei-Zinn-Chalkogenid-TCI lassen sich durch Temperatur sowie chemische Zusammensetzung einstellen. Hier wird gezeigt, dass Bi-Dotierung von eptiaktischen Pb1-xSnxSe(111)-Schichten einen Quantenphasenübergang von einem topologischen kristallinen Isolator zu einemIn der vorliegenden Studie verwenden wir die Methode der winkelaufgelösten Photoemissionsspektroskopie (ARPES) zur Untersuchung der elektronischen Struktur von topologischen Zuständen der Materie. Insbesondere die sogenannten topologischen kristallinen Isolatoren (TCI) Pb1-xSnxSe und Pb1-xSnxTe sowie die Mn-dotierten Z2 topologischen Isolatoren (TI) Bi2Te3 und Bi2Se3. Die Z2-Klasse der starken topologischen Isolatoren ist durch Zeitumkehrsymmetrie geschützt und durch eine ungerade Anzahl metallischer Dirac-Oberflächenzustände in der Oberflächenbrillouinzone gekennzeichnet. Die topologischen kristallinen Isolatoren hingegen sind durch einzelne Kristallsymmetrien geschützt und weisen eine gerade Anzahl von Dirac-Kegeln auf. Die topologischen Eigenschaften von Blei-Zinn-Chalkogenid-TCI lassen sich durch Temperatur sowie chemische Zusammensetzung einstellen. Hier wird gezeigt, dass Bi-Dotierung von eptiaktischen Pb1-xSnxSe(111)-Schichten einen Quantenphasenübergang von einem topologischen kristallinen Isolator zu einem Z2-topologischen Isolator hervorruft. Dies geschieht, weil die Dotierung mit Bi die vierfache Valley-Entartung im Volumen aufhebt. Als Konsequenz entsteht eine Lücke bei ⌈¯, während die drei Dirac-Kegel an den M̅-Punkten der Oberflächenbrillouinzone intakt bleiben. Wir interpretieren diesen neuen Phasenübergang als durch eine Gitterverzerrung verursacht. Unsere Ergebnisse erweitern das topologische Phasendiagramm enorm und machen starke topologische Isolatoren durch Verzerrungen oder elektrische Felder schaltbar. Im Gegensatz dazu induziert eine Bi-Dotierung im Volumen von epitaktischen Pb1-xSnxTe(111)-Schichten eine riesige Rashba-Aufspaltung an der Oberfläche, die durch das Ausmaß der Dotierung eingestellt werden kann. Tight-Binding-Berechnungen identifizieren ihren Ursprung in einem Fermi-Niveau-Pinning durch Trap-Zustände an der Oberfläche. Magnetisch dotierte topologische Isolatoren ermöglichen den quantisierten anomalen Hall-Effekt (QAHE), der quantisierte Kantenzustände liefert, die für verlustfreien Ladungstransport eingesetzt werden können. Die Kantenzustände treten in einer magnetischen Energielücke am Dirac-Punkt auf, die bisher noch nicht experimentell beobachtet wurde. Unsere Tieftemperatur-ARPES-Untersuchungen weisen die magnetische Energielücke in Mn dotiertem Bi2Te3 eindeutig nach. Unsere Analyse zeigt unterhalb von Tc eine viermal größere Energielücke als theoretisch vorhergesagt. Wir führen diese Erhöhung auf eine bemerkenswerte Strukturmodifikation durch die Mn-Dotierung zurück. Statt eines Systems mit ungeordneten Mn Verunreinigungen entsteht eine selbstorganisierte alternierende Sequenz von MnBi2Te4-Septupel- und Bi2Te3-Quintupel-Schichten. Das erhöht den Überlapp der Wellenfunktionen und führt zu der großen magnetischen Energielücke. Mn-dotiertes Bi2Se3 bildet ähnliche Heterostrukturen aus, jedoch wird in diesem System nur eine nichtmagnetische Energielücke beobachtet. Dies korreliert mit der unterschiedlichen magnetischen Anisotropie aufgrund der viel größeren Spin-Bahn-Wechselwirkung im Bi2Te3 im Vergleich zu Bi2Se3. Diese Resultate liefern entscheidende Erkenntnisse, um verlustfreien Transport in topologischen Isolatoren für Anwendungen bei Raumtemperatur weiterzuentwickeln.show moreshow less

Download full text files

  • SHA-512:d13a4b57dfdd2f923164407fed8e35f9ec0706a9275657a0a7353b3d5dca5914140d0e32a21bbf653c6b2fdaccc8868352c9549846a700b95d0851797bff3d8a

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Partha Sarathi MandalORCiD
URN:urn:nbn:de:kobv:517-opus4-480459
DOI:https://doi.org/10.25932/publishup-48045
Reviewer(s):Hans-Joachim ElmersORCiD, Martin WeineltORCiD
Supervisor(s):Oliver Rader
Publication type:Doctoral Thesis
Language:English
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/10/29
Release date:2020/11/04
Tag:Rashba-Effekt; Topologischer Isolator; Topologischer kristalliner Isolator
ARPES; Rashba effect; Topological Crystalline Insulator; Topological Insulator
Number of pages:122
RVK - Regensburg classification:UP 5450, UP 5110
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.