The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4550 of 4743
Back to Result List

Joint multi-scale statistics of longitudinal and transversal increments in small-scale wake turbulence

  • We analyse the relationship of longitudinal and transversal increment statistics measured in isotropic small- scale turbulence. This is done by means of the theory of Markov processes leading to a phenomenological Fokker - Planck equation for the two increments from which a generalized K arm an equation is derived. We discuss in detail the analysis and show that the estimated equation can describe the statistics of the turbulent cascade. A remarkable result is that the main differences between longitudinal and transversal increments can be explained by a simple rescaling symmetry, namely the cascade speed of the transverse increments is 1.5 times faster than that of the longitudinal increments. Small differences can be found in the skewness and in a higher order intermittency term. The rescaling symmetry is compatible with the Kolmogorov constants and the K arm an equation and gives new insight into the use of extended self- similarity (ESS) for transverse increments. Based on the results we propose an extended self-similarity for theWe analyse the relationship of longitudinal and transversal increment statistics measured in isotropic small- scale turbulence. This is done by means of the theory of Markov processes leading to a phenomenological Fokker - Planck equation for the two increments from which a generalized K arm an equation is derived. We discuss in detail the analysis and show that the estimated equation can describe the statistics of the turbulent cascade. A remarkable result is that the main differences between longitudinal and transversal increments can be explained by a simple rescaling symmetry, namely the cascade speed of the transverse increments is 1.5 times faster than that of the longitudinal increments. Small differences can be found in the skewness and in a higher order intermittency term. The rescaling symmetry is compatible with the Kolmogorov constants and the K arm an equation and gives new insight into the use of extended self- similarity (ESS) for transverse increments. Based on the results we propose an extended self-similarity for the transverse increments (ESST)show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Malte Siefert, J Peinke
DOI:https://doi.org/10.1080/14685240600677673
Publication type:Article
Language:English
Year of first publication:2006
Publication year:2006
Release date:2017/03/24
Source:Journal of turbulence. - 7 (2006), 50, S. 1 - 35
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.