• search hit 3 of 5
Back to Result List

Absorption signatures of warm-hot gas at low redshift - ne viii

  • At z < 1 a large fraction of the baryons is thought to reside in diffuse gas that has been shock-heated to high temperatures (10 (5)-10 (6) K). Absorption by the 770.41, 780.32 A doublet of Ne viii in quasar spectra represents a unique tool to study this elusive warm-hot phase. We have developed an analytic model for the properties of Ne viii absorbers that allows for an inhomogeneous metal distribution. Our model agrees with the predictions of a simulation from the OverWhelmingly Large Simulations project indicating that the average line-of-sight metal-filling fraction within the absorbing gas is low (c(L) similar to 0.1). Most of the Ne viii in our model is produced in low-density, collisionally ionized gas (n(H) = 10(-6)-10(-4) cm(-3), T = 10 (5)-10 (6) K). Strong Ne viii absorbers (log(10)(N-NeVIII/cm(-2))14), like those recently detected by Hubble Space Telescope/Cosmic Origins Spectrograph, are found to arise in higher density gas (n(H) greater than or similar to 10(-4) cm(-3), T approximate to 5 x 10 (5) K). Ne viii cloudletsAt z < 1 a large fraction of the baryons is thought to reside in diffuse gas that has been shock-heated to high temperatures (10 (5)-10 (6) K). Absorption by the 770.41, 780.32 A doublet of Ne viii in quasar spectra represents a unique tool to study this elusive warm-hot phase. We have developed an analytic model for the properties of Ne viii absorbers that allows for an inhomogeneous metal distribution. Our model agrees with the predictions of a simulation from the OverWhelmingly Large Simulations project indicating that the average line-of-sight metal-filling fraction within the absorbing gas is low (c(L) similar to 0.1). Most of the Ne viii in our model is produced in low-density, collisionally ionized gas (n(H) = 10(-6)-10(-4) cm(-3), T = 10 (5)-10 (6) K). Strong Ne viii absorbers (log(10)(N-NeVIII/cm(-2))14), like those recently detected by Hubble Space Telescope/Cosmic Origins Spectrograph, are found to arise in higher density gas (n(H) greater than or similar to 10(-4) cm(-3), T approximate to 5 x 10 (5) K). Ne viii cloudlets harbour only 1 per cent of the cosmic baryon budget. The baryon content of the surrounding gas (which has similar densities and temperatures as the Ne viii cloudlets) is a factor c(-1)L higher. We conclude that Ne viii absorbers are robust probes of shock-heated diffuse gas, but that spectra with signal-to-noise ratios S/N > 100 would be required to detect the bulk of the baryons in warm-hot gas.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Thor Tepper-Garcia, Philipp RichterORCiDGND, Joop SchayeORCiD
DOI:https://doi.org/10.1093/mnras/stt1712
ISSN:0035-8711
ISSN:1365-2966
Title of parent work (English):Monthly notices of the Royal Astronomical Society
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:cosmology: theory; galaxies: formation; intergalactic medium; methods: analytical; methods: numerical; quasars: absorption lines
Volume:436
Issue:3
Number of pages:19
First page:2063
Last Page:2081
Funding institution:Netherlands Organisation for Scientific Research (NWO); NWO VIDI grant; Marie Curie Initial Training Network CosmoComp [PITN-GA-2009-238356]; Deutsche Forschungsgemeinschaft (DFG) [DFG-GZ: Ri 1124/5-1]; European Research Council under the European Union/ERC [278594-GasAroundGalaxies]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.