• search hit 1 of 1
Back to Result List

Starch phosphorylase : role in starch metabolism and biotechnological applications

  • The alpha-glucan phosphorylases of the glycosyltransferase family are important enzymes of carbohydrate metabolism in prokaryotes and eukaryotes. The plant a-glucan phosphorylase, commonly called starch phosphorylase (EC 2.4.1.1), is largely known for the phosphorolytic degradation of starch. Starch phosphorylase catalyzes the reversible transfer of glucosyl units from glucose-1-phosphate to the nonreducing end of alpha-1,4-D-glucan chains with the release of phosphate. Two distinct forms of starch phosphorylase, plastidic phosphorylase and cytosolic phosphorylase, have been consistently observed in higher plants. Starch phosphorylase is industrially useful and a preferred enzyme among all glucan phosphorylases for phosphorolytic reactions for the production of glucose-1-phosphate and for the development of engineered varieties of glucans and starch. Despite several investigations, the precise functional mechanisms of its characteristic multiple forms and the structural details are still eluding us. Recent discoveries have shed someThe alpha-glucan phosphorylases of the glycosyltransferase family are important enzymes of carbohydrate metabolism in prokaryotes and eukaryotes. The plant a-glucan phosphorylase, commonly called starch phosphorylase (EC 2.4.1.1), is largely known for the phosphorolytic degradation of starch. Starch phosphorylase catalyzes the reversible transfer of glucosyl units from glucose-1-phosphate to the nonreducing end of alpha-1,4-D-glucan chains with the release of phosphate. Two distinct forms of starch phosphorylase, plastidic phosphorylase and cytosolic phosphorylase, have been consistently observed in higher plants. Starch phosphorylase is industrially useful and a preferred enzyme among all glucan phosphorylases for phosphorolytic reactions for the production of glucose-1-phosphate and for the development of engineered varieties of glucans and starch. Despite several investigations, the precise functional mechanisms of its characteristic multiple forms and the structural details are still eluding us. Recent discoveries have shed some light on their physiological substrates, precise biological functions, and regulatory aspects. in this review, we have highlighted important developments in understanding the role of starch phosphorylases and their emerging applications in industry.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:R. S. Rathore, Neha Garg, Sarika Garg
URL:http://www.ingentaconnect.com/content/07388551
DOI:https://doi.org/10.1080/07388550902926063
ISSN:0738-8551
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Critical reviews in biotechnology. - ISSN 0738-8551. - 29 (2009), 3, S. 214 - 224
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.