• search hit 63 of 771
Back to Result List

Fourier spectral- and duration models for the generation of response spectra adjustable to different source-, propagation-, and site conditions

  • One of the major challenges related with the current practice in seismic hazard studies is the adjustment of empirical ground motion prediction equations (GMPEs) to different seismological environments. We believe that the key to accommodating differences in regional seismological attributes of a ground motion model lies in the Fourier spectrum. In the present study, we attempt to explore a new approach for the development of response spectral GMPEs, which is fully consistent with linear system theory when it comes to adjustment issues. This approach consists of developing empirical prediction equations for Fourier spectra and for a particular duration estimate of ground motion which is tuned to optimize the fit between response spectra obtained through the random vibration theory framework and the classical way. The presented analysis for the development of GMPEs is performed on the recently compiled reference database for seismic ground motion in Europe (RESORCE-2012). Although, the main motivation for the presented approach is theOne of the major challenges related with the current practice in seismic hazard studies is the adjustment of empirical ground motion prediction equations (GMPEs) to different seismological environments. We believe that the key to accommodating differences in regional seismological attributes of a ground motion model lies in the Fourier spectrum. In the present study, we attempt to explore a new approach for the development of response spectral GMPEs, which is fully consistent with linear system theory when it comes to adjustment issues. This approach consists of developing empirical prediction equations for Fourier spectra and for a particular duration estimate of ground motion which is tuned to optimize the fit between response spectra obtained through the random vibration theory framework and the classical way. The presented analysis for the development of GMPEs is performed on the recently compiled reference database for seismic ground motion in Europe (RESORCE-2012). Although, the main motivation for the presented approach is the adjustability and the use of the corresponding model to generate data driven host-to-target conversions, even as a standalone response spectral model it compares reasonably well with the GMPEs of Ambraseys et al. (Bull Earthq Eng 3:1-53, 2005), Akkar and Bommer (Seismol Res Lett 81(2):195-206, 2010) and Akkar and Cagnan (Bull Seismol Soc Am 100(6):2978-2995, 2010).show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sanjay Singh BoraGND, Frank ScherbaumORCiDGND, Nicolas Kühn, Peter Stafford
DOI:https://doi.org/10.1007/s10518-013-9482-z
ISSN:1570-761X
ISSN:1573-1456
Title of parent work (English):Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering
Publisher:Springer
Place of publishing:Dordrecht
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Tag:Duration; Fourier amplitude spectrum; Ground motion prediction equation; Random vibration theory; Response Spectrum
Volume:12
Issue:1
Number of pages:27
First page:467
Last Page:493
Funding institution:Helmholtz graduate research school GeoSim
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geographie und Geoökologie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geoökologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.