• Treffer 62 von 66
Zurück zur Trefferliste

Size distribution of particles in Saturn's rings from aggregation and fragmentation

  • Saturn's rings consist of a huge number of water ice particles, with a tiny addition of rocky material. They form a flat disk, as the result of an interplay of angular momentum conservation and the steady loss of energy in dissipative interparticle collisions. For particles in the size range from a few centimeters to a few meters, a power-law distribution of radii, similar to r(-q) with q approximate to 3, has been inferred; for larger sizes, the distribution has a steep cutoff. It has been suggested that this size distribution may arise from a balance between aggregation and fragmentation of ring particles, yet neither the power-law dependence nor the upper size cutoff have been established on theoretical grounds. Here we propose a model for the particle size distribution that quantitatively explains the observations. In accordance with data, our model predicts the exponent q to be constrained to the interval 2.75 <= q <= 3.5. Also an exponential cutoff for larger particle sizes establishes naturally with the cutoff radius being setSaturn's rings consist of a huge number of water ice particles, with a tiny addition of rocky material. They form a flat disk, as the result of an interplay of angular momentum conservation and the steady loss of energy in dissipative interparticle collisions. For particles in the size range from a few centimeters to a few meters, a power-law distribution of radii, similar to r(-q) with q approximate to 3, has been inferred; for larger sizes, the distribution has a steep cutoff. It has been suggested that this size distribution may arise from a balance between aggregation and fragmentation of ring particles, yet neither the power-law dependence nor the upper size cutoff have been established on theoretical grounds. Here we propose a model for the particle size distribution that quantitatively explains the observations. In accordance with data, our model predicts the exponent q to be constrained to the interval 2.75 <= q <= 3.5. Also an exponential cutoff for larger particle sizes establishes naturally with the cutoff radius being set by the relative frequency of aggregating and disruptive collisions. This cutoff is much smaller than the typical scale of microstructures seen in Saturn's rings.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Nikolai V. BrilliantovORCiDGND, P. L. Krapivsky, Anna Bodrova, Frank SpahnORCiDGND, Hisao Hayakawa, Vladimir Stadnichuk, Jurgen Schmidt
DOI:https://doi.org/10.1073/pnas.1503957112
ISSN:0027-8424
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/26183228
Titel des übergeordneten Werks (Englisch):Proceedings of the National Academy of Sciences of the United States of America
Verlag:National Acad. of Sciences
Verlagsort:Washington
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2015
Erscheinungsjahr:2015
Datum der Freischaltung:27.03.2017
Freies Schlagwort / Tag:coagulation-fragmentation; kinetic theory; planetary rings
Band:112
Ausgabe:31
Seitenanzahl:6
Erste Seite:9536
Letzte Seite:9541
Fördernde Institution:Deutsches Zentrum fur Luft und Raumfahrt; Deutsche Forschungsgemeinschaft; Russian Foundation for Basic Research [12-02-31351]; [269139]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.