• Treffer 52 von 63
Zurück zur Trefferliste

Experimental investigation of FeCO3 (siderite) stability in Earth's lower mantle using XANES spectroscopy

  • We studied FeCO3 using Fe K-edge X-ray absorption near-edge structure (XANES) spectroscopy at pressures up to 54 GPa and temperatures above 2000 K. First-principles calculations of Fe at the K-edge in FeCO3 were performed to support the interpretation of the XANES spectra. The variation of iron absorption edge features with pressure and temperature in FeCO3 matches well with recently reported observations on FeCO3 at extreme conditions, and provides new insight into the stability of Fe-carbonates in Earth's mantle. Here we show that at conditions of the mid-lower mantle, ~50 GPa and ~2200 K, FeCO3 melts and partially decomposes to high-pressure Fe3O4. Carbon (diamond) and oxygen are also inferred products of the reaction. We constrained the thermodynamic phase boundary between crystalline FeCO3 and melt to be at 51(1) GPa and ~1850 K. We observe that at 54(1) GPa, temperature-induced spin crossover of Fe2+ takes place from low to high spin such that at 1735(100) K, all iron in FeCO3 is in the high-spin state. A comparison betweenWe studied FeCO3 using Fe K-edge X-ray absorption near-edge structure (XANES) spectroscopy at pressures up to 54 GPa and temperatures above 2000 K. First-principles calculations of Fe at the K-edge in FeCO3 were performed to support the interpretation of the XANES spectra. The variation of iron absorption edge features with pressure and temperature in FeCO3 matches well with recently reported observations on FeCO3 at extreme conditions, and provides new insight into the stability of Fe-carbonates in Earth's mantle. Here we show that at conditions of the mid-lower mantle, ~50 GPa and ~2200 K, FeCO3 melts and partially decomposes to high-pressure Fe3O4. Carbon (diamond) and oxygen are also inferred products of the reaction. We constrained the thermodynamic phase boundary between crystalline FeCO3 and melt to be at 51(1) GPa and ~1850 K. We observe that at 54(1) GPa, temperature-induced spin crossover of Fe2+ takes place from low to high spin such that at 1735(100) K, all iron in FeCO3 is in the high-spin state. A comparison between experiment and theory provides a more detailed understanding of FeCO3 decomposition observed in X-ray absorption spectra and helps to explain spectral changes due to pressure-induced spin crossover in FeCO3 at ambient temperature.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Valerio Cerantola, Max WilkeORCiDGND, Innokenty Kantor, Leyla Ismailova, Ilya KupenkoORCiD, Catherine McCammon, Sakura Pascarelli, Leonid S. Dubrovinsky
DOI:https://doi.org/10.2138/am-2019-6428
ISSN:0003-004X
ISSN:1945-3027
Titel des übergeordneten Werks (Englisch):American mineralogist : an international journal of earth and planetary materials
Verlag:Mineralogical Society of America
Verlagsort:Chantilly
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2019
Erscheinungsjahr:2019
Datum der Freischaltung:08.12.2020
Freies Schlagwort / Tag:Deep carbon cycle; Earth in Five Reactions: A Deep Carbon Perspective; decomposition; melting; siderite; spin transition
Band:104
Ausgabe:8
Seitenanzahl:9
Erste Seite:1083
Letzte Seite:1091
Fördernde Institution:German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)German Research Foundation (DFG) [FOR2125]; Federal Ministry of Education and research (BMBF, Germany)Federal Ministry of Education & Research (BMBF); Sloan FoundationAlfred P. Sloan Foundation [G-2016-7157]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.