• search hit 2 of 8
Back to Result List

Improving the interpretability of 3D GPR data using target-specific attributes : application to tomb detection

  • Three-dimensional (3D) ground-penetrating radar (GPR) represents an efficient high-resolution geophysical surveying method allowing to explore archaeological sites in a non-destructive manner. To effectively analyze large 3D GPR data sets, their combination with modern visualization techniques (e.g., 3D isoamplitude displays) has been acknowledged to facilitate interpretation beyond classical time-slice analysis. In this study, we focus on the application of data attributes (namely energy, coherency, and similarity), originally developed for petroleum reservoir related problems addressed by reflection seismology, to emphasize temporal and spatial variations within GPR data cubes. Based on two case studies, we illustrate the potential of such attribute based analyses towards a more comprehensive 3D GPR data interpretation. The main goal of both case studies was to localize and potentially characterize tombs inside medieval chapels situated in the state of Brandenburg, Germany. By comparing the calculated data attributes to theThree-dimensional (3D) ground-penetrating radar (GPR) represents an efficient high-resolution geophysical surveying method allowing to explore archaeological sites in a non-destructive manner. To effectively analyze large 3D GPR data sets, their combination with modern visualization techniques (e.g., 3D isoamplitude displays) has been acknowledged to facilitate interpretation beyond classical time-slice analysis. In this study, we focus on the application of data attributes (namely energy, coherency, and similarity), originally developed for petroleum reservoir related problems addressed by reflection seismology, to emphasize temporal and spatial variations within GPR data cubes. Based on two case studies, we illustrate the potential of such attribute based analyses towards a more comprehensive 3D GPR data interpretation. The main goal of both case studies was to localize and potentially characterize tombs inside medieval chapels situated in the state of Brandenburg, Germany. By comparing the calculated data attributes to the conventionally processed data cubes, we demonstrate the superior interpretability of the coherency and the similarity attribute for target identification and characterization.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Urs Boeniger, Jens TronickeORCiDGND
URL:http://www.sciencedirect.com/science/journal/03054403
DOI:https://doi.org/10.1016/j.jas.2009.09.049
ISSN:0305-4403
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Journal of archaeological science. - ISSN 0305-4403. - 37 (2010), 2, S. 360 - 367
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.