• Treffer 10 von 157
Zurück zur Trefferliste

Thermocline deepening boosts ecosystem metabolism: evidence from a large-scale lake enclosure experiment simulating a summer storm

  • Extreme weather events can pervasively influence ecosystems. Observations in lakes indicate that severe storms in particular can have pronounced ecosystem-scale consequences, but the underlying mechanisms have not been rigorously assessed in experiments. One major effect of storms on lakes is the redistribution of mineral resources and plankton communities as a result of abrupt thermocline deepening. We aimed at elucidating the importance of this effect by mimicking in replicated large enclosures (each 9 m in diameter, ca. 20 m deep, ca. 1300 m 3 in volume) a mixing event caused by a severe natural storm that was previously observed in a deep clear-water lake. Metabolic rates were derived from diel changes in vertical profiles of dissolved oxygen concentrations using a Bayesian modelling approach, based on high-frequency measurements. Experimental thermocline deepening stimulated daily gross primary production (GPP) in surface waters by an average of 63% for > 4 weeks even though thermal stratification re-established within 5 days.Extreme weather events can pervasively influence ecosystems. Observations in lakes indicate that severe storms in particular can have pronounced ecosystem-scale consequences, but the underlying mechanisms have not been rigorously assessed in experiments. One major effect of storms on lakes is the redistribution of mineral resources and plankton communities as a result of abrupt thermocline deepening. We aimed at elucidating the importance of this effect by mimicking in replicated large enclosures (each 9 m in diameter, ca. 20 m deep, ca. 1300 m 3 in volume) a mixing event caused by a severe natural storm that was previously observed in a deep clear-water lake. Metabolic rates were derived from diel changes in vertical profiles of dissolved oxygen concentrations using a Bayesian modelling approach, based on high-frequency measurements. Experimental thermocline deepening stimulated daily gross primary production (GPP) in surface waters by an average of 63% for > 4 weeks even though thermal stratification re-established within 5 days. Ecosystem respiration (ER) was tightly coupled to GPP, exceeding that in control enclosures by 53% over the same period. As GPP responded more strongly than ER, net ecosystem productivity (NEP) of the entire water column was also increased. These protracted increases in ecosystem metabolism and autotrophy were driven by a proliferation of inedible filamentous cyanobacteria released from light and nutrient limitation after they were entrained from below the thermocline into the surface water. Thus, thermocline deepening by a single severe storm can induce prolonged responses of lake ecosystem metabolism independent of other storm-induced effects, such as inputs of terrestrial materials by increased catchment run-off. This highlights that future shifts in frequency, severity or timing of storms are an important component of climate change, whose impacts on lake thermal structure will superimpose upon climate trends to influence algal dynamics and organic matter cycling in clear-water lakes. Keywords: climate variability, ecosystem productivity, extreme events, gross primary production, mesocosm, respiration stratified lakeszeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Darren P. Giling, Jens C. Nejstgaard, Stella A. BergerORCiD, Hans-Peter GrossartORCiDGND, Georgiy Kirillin, Armin Penske, Maren Lentz, Peter CasperORCiD, Joerg Sareyka, Mark O. Gessner
DOI:https://doi.org/10.1111/gcb.13512
ISSN:1354-1013
ISSN:1365-2486
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/27664076
Titel des übergeordneten Werks (Englisch):Global change biology
Verlag:Wiley
Verlagsort:Hoboken
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2017
Erscheinungsjahr:2017
Datum der Freischaltung:20.04.2020
Freies Schlagwort / Tag:climate variability; ecosystem productivity; extreme events; gross primary production; mesocosm; respiration stratified lakes
Band:23
Seitenanzahl:15
Erste Seite:1448
Letzte Seite:1462
Fördernde Institution:Leibniz Competition grant; HPG [SAW-2011-IGB-2]; German Federal Ministry of Education and Research (BMBF) [033L041B]; German Research Foundation (DFG) [GE 1775/2-1]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.