The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 13 of 15
Back to Result List

Palaeogeography and diachronous infill of an ancient deep-marine foreland basin, Upper Cretaceous Cerro Toro Formation, Magallanes Basin

  • The details of how narrow, orogen-parallel ocean basins are filled with sediment by large axial submarine channels is important to understand because these depositional systems commonly form in through-like basins in various tectonic settings. The Magallanes foreland basin is an excellent location to study an orogen-parallel deep-marine system. Conglomerate lenses of the Upper Cretaceous Cerro Toro Formation have been previously interpreted to represent the fill of a single submarine channel (48 km wide, >100 km long) that funneled coarse detritus southward along the basin axis. This interpretation was based on lithologic correlations. New U/Pb dating of zircons from volcanic ashes and sandstones, coupled with strontium isotope stratigraphy, refine the controls on depositional ages and provenance. Results demonstrate that north-south oriented conglomerate lenses are contemporaneous within error limits (ca. 8482 Ma) supporting that they represent parts of an axial channel belt. Channel deposits 20 km west of the axial location are 8782The details of how narrow, orogen-parallel ocean basins are filled with sediment by large axial submarine channels is important to understand because these depositional systems commonly form in through-like basins in various tectonic settings. The Magallanes foreland basin is an excellent location to study an orogen-parallel deep-marine system. Conglomerate lenses of the Upper Cretaceous Cerro Toro Formation have been previously interpreted to represent the fill of a single submarine channel (48 km wide, >100 km long) that funneled coarse detritus southward along the basin axis. This interpretation was based on lithologic correlations. New U/Pb dating of zircons from volcanic ashes and sandstones, coupled with strontium isotope stratigraphy, refine the controls on depositional ages and provenance. Results demonstrate that north-south oriented conglomerate lenses are contemporaneous within error limits (ca. 8482 Ma) supporting that they represent parts of an axial channel belt. Channel deposits 20 km west of the axial location are 8782 Ma in age. These channels are partly contemporaneous with the ones within the axial channel belt, making it likely that they represent feeders to the axial channel system. The northern Cerro Toro Formation spans a Turonian to Campanian interval (ca. 9082 Ma) whereas the formation top, 70 km to the south, is as young as ca. 76 Ma. KolmogorovSmirnoff statistical analysis on detrital zircon age distributions shows that the northern uppermost Cerro Toro Formation yields a statistically different age distribution than other samples from the same formation but shows no difference relative to the overlying Tres Pasos Formation. These results suggest the partly coeval deposition of both formations. Integration of previously acquired geochronologic and stratigraphic data with new data show a pronounced southward younging pattern in all four marine formations in the Magallanes Basin. Highly diachronous infilling may be an important depositional pattern for narrow, orogen-parallel ocean basins.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Anne BernhardtORCiDGND, Zane R. Jobe, Marty Grove, Donald R. Lowe
DOI:https://doi.org/10.1111/j.1365-2117.2011.00528.x
ISSN:0950-091X
Title of parent work (English):Basin research
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:24
Issue:3
Number of pages:26
First page:269
Last Page:294
Funding institution:Stanford Project on Deep-water Depositional Systems (SPODDS); Aera Energy; Anadarko Petroleum Corporation; BHP Billiton; Chevron; ConocoPhillips; Hess Corporation; Marathon Oil Company; Nexen Energy; Occidental Petroleum; Petrobras; Reliance Industries Ltd.; Rohol- Aufsuchungs A.G. (RAG); Schlumberger; Shell; GSA; Stanford A.I. Levorsen grant; McGee grant
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.