• search hit 51 of 1450
Back to Result List

Quasi-6-Day Wave Modulation of the Equatorial Electrojet

  • The equatorial electrojet is an enhanced eastward current in the dayside E region ionosphere flowing along the magnetic equator. The equatorial electrojet is highly variable as it is subject to various forcing mechanisms including atmospheric waves from the lower layers of the atmosphere. There are occasionally times when the intensity of the equatorial electrojet at a fixed longitude shows an oscillatory variation with a period of approximately 6days. We present case studies of such events based on the equatorial electrojet measurements from the CHAMP and Swarm satellites. The spatial and temporal variability of the equatorial electrojet intensity during these events reveals characteristics of a westward propagating wave with zonal wavenumber 1, consistent with the effect of the quasi-6-day planetary wave. Analyses of the geopotential height data from the Aura satellite confirm the presence of the quasi-6-day planetary wave in the lower thermosphere during the events. The amplitude of the quasi-6-day variation in the equatorialThe equatorial electrojet is an enhanced eastward current in the dayside E region ionosphere flowing along the magnetic equator. The equatorial electrojet is highly variable as it is subject to various forcing mechanisms including atmospheric waves from the lower layers of the atmosphere. There are occasionally times when the intensity of the equatorial electrojet at a fixed longitude shows an oscillatory variation with a period of approximately 6days. We present case studies of such events based on the equatorial electrojet measurements from the CHAMP and Swarm satellites. The spatial and temporal variability of the equatorial electrojet intensity during these events reveals characteristics of a westward propagating wave with zonal wavenumber 1, consistent with the effect of the quasi-6-day planetary wave. Analyses of the geopotential height data from the Aura satellite confirm the presence of the quasi-6-day planetary wave in the lower thermosphere during the events. The amplitude of the quasi-6-day variation in the equatorial electrojet intensity depends on longitude, but no systematic longitudinal dependence is found for different events. During the event of August 2010, quasi-6-day variations are also observed by ground-based magnetometers and a radar in the Peruvian sector. The effect of the quasi-6-day wave accounts for up to +/- 5.9m/s in the equatorial vertical plasma velocity at noon, which is much larger than previously predicted by a numerical model. These results suggest that the quasi-6-day planetary wave is an important source of short-term variability in the equatorial ionosphere.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Yosuke YamazakiORCiD, Claudia StolleORCiDGND, Jürgen MatzkaORCiDGND, Patrick AlkenORCiD
DOI:https://doi.org/10.1029/2018JA025365
ISSN:2169-9380
ISSN:2169-9402
Title of parent work (English):Journal of geophysical research : Space physics
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Date of first publication:2018/04/06
Publication year:2018
Release date:2021/12/03
Volume:123
Issue:5
Number of pages:16
First page:4094
Last Page:4109
Funding institution:NSF through the Cornell University [AGS-905448]; Priority Program 1788 "Dynamic Earth" of Deutsche Forschungsgemeinschaft (DFG)German Research Foundation (DFG); Alexander von Humboldt FoundationAlexander von Humboldt Foundation
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.