The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 30 of 2498
Back to Result List

A machine learning approach for improving the detection capabilities at 3C Seismic Stations

  • We apply and evaluate a recent machine learning method for the automatic classification of seismic waveforms. The method relies on Dynamic Bayesian Networks (DBN) and supervised learning to improve the detection capabilities at 3C seismic stations. A time-frequency decomposition provides the basis for the required signal characteristics we need in order to derive the features defining typical "signal" and "noise" patterns. Each pattern class is modeled by a DBN, specifying the interrelationships of the derived features in the time-frequency plane. Subsequently, the models are trained using previously labeled segments of seismic data. The DBN models can now be compared against in order to determine the likelihood of new incoming seismic waveform segments to be either signal or noise. As the noise characteristics of seismic stations varies smoothly in time (seasonal variation as well as anthropogenic influence), we accommodate in our approach for a continuous adaptation of the DBN model that is associated with the noise class. Given theWe apply and evaluate a recent machine learning method for the automatic classification of seismic waveforms. The method relies on Dynamic Bayesian Networks (DBN) and supervised learning to improve the detection capabilities at 3C seismic stations. A time-frequency decomposition provides the basis for the required signal characteristics we need in order to derive the features defining typical "signal" and "noise" patterns. Each pattern class is modeled by a DBN, specifying the interrelationships of the derived features in the time-frequency plane. Subsequently, the models are trained using previously labeled segments of seismic data. The DBN models can now be compared against in order to determine the likelihood of new incoming seismic waveform segments to be either signal or noise. As the noise characteristics of seismic stations varies smoothly in time (seasonal variation as well as anthropogenic influence), we accommodate in our approach for a continuous adaptation of the DBN model that is associated with the noise class. Given the difficulty for obtaining a golden standard for real data (ground truth) the proof of concept and evaluation is shown by conducting experiments based on 3C seismic data from the International Monitoring Stations, BOSA and LPAZ.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Carsten Riggelsen, Matthias OhrnbergerORCiDGND
DOI:https://doi.org/10.1007/s00024-012-0592-3
ISSN:0033-4553
ISSN:1420-9136
Title of parent work (English):Pure and applied geophysics
Publisher:Springer
Place of publishing:Basel
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:171
Issue:3-5
Number of pages:17
First page:395
Last Page:411
Funding institution:DFG [RI 2037/2-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.