• search hit 17 of 20578
Back to Result List

Impact of a food-based dietary fat exchange model for replacing dietary saturated with unsaturated fatty acids in healthy men on plasma phospholipids fatty acid profiles and dietary patterns

  • Purpose UK guidelines recommend dietary saturated fatty acids (SFAs) should not exceed 10% total energy (%TE) for cardiovascular disease prevention, with benefits observed when SFAs are replaced with unsaturated fatty acids (UFAs). This study aimed to assess the efficacy of a dietary exchange model using commercially available foods to replace SFAs with UFAs. Methods Healthy men (n = 109, age 48, SD 11 year) recruited to the Reading, Imperial, Surrey, Saturated fat Cholesterol Intervention-1 (RISSCI-1) study (ClinicalTrials.Gov n degrees NCT03270527) followed two sequential 4-week isoenergetic moderate-fat (34%TE) diets: high-SFA (18%TE SFAs, 16%TE UFAs) and low-SFA (10%TE SFAs, 24%TE UFAs). Dietary intakes were assessed using 4-day weighed diet diaries. Nutrient intakes were analysed using paired t-tests, fasting plasma phospholipid fatty acid (PL-FA) profiles and dietary patterns were analysed using orthogonal partial least square discriminant analyses. Results Participants exchanged 10.2%TE (SD 4.1) SFAs for 9.7%TE (SD 3.9) UFAsPurpose UK guidelines recommend dietary saturated fatty acids (SFAs) should not exceed 10% total energy (%TE) for cardiovascular disease prevention, with benefits observed when SFAs are replaced with unsaturated fatty acids (UFAs). This study aimed to assess the efficacy of a dietary exchange model using commercially available foods to replace SFAs with UFAs. Methods Healthy men (n = 109, age 48, SD 11 year) recruited to the Reading, Imperial, Surrey, Saturated fat Cholesterol Intervention-1 (RISSCI-1) study (ClinicalTrials.Gov n degrees NCT03270527) followed two sequential 4-week isoenergetic moderate-fat (34%TE) diets: high-SFA (18%TE SFAs, 16%TE UFAs) and low-SFA (10%TE SFAs, 24%TE UFAs). Dietary intakes were assessed using 4-day weighed diet diaries. Nutrient intakes were analysed using paired t-tests, fasting plasma phospholipid fatty acid (PL-FA) profiles and dietary patterns were analysed using orthogonal partial least square discriminant analyses. Results Participants exchanged 10.2%TE (SD 4.1) SFAs for 9.7%TE (SD 3.9) UFAs between the high and low-SFA diets, reaching target intakes with minimal effect on other nutrients or energy intakes. Analyses of dietary patterns confirmed successful incorporation of recommended foods from commercially available sources (e.g. dairy products, snacks, oils, and fats), without affecting participants' overall dietary intakes. Analyses of plasma PL-FAs indicated good compliance to the dietary intervention and foods of varying SFA content. Conclusions RISSCI-1 dietary exchange model successfully replaced dietary SFAs with UFAs in free-living healthy men using commercially available foods, and without altering their dietary patterns. Further intervention studies are required to confirm utility and feasibility of such food-based dietary fat replacement models at a population level.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Laury Sellem, Rona Antoni, Athanasios Koutsos, Ezgi Ozen, Gloria Wong, Hasnaa Ayyad, Michelle Weech, Matthias Bernd SchulzeORCiDGND, Andreas Wernitz, Barbara A. Fielding, M. Denise Robertson, Kim G. Jackson, Bruce A. Griffin, Julie A. LovegroveORCiDGND
DOI:https://doi.org/10.1007/s00394-022-02910-2
ISSN:1436-6207
ISSN:1436-6215
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/35668120
Title of parent work (English):European journal of nutrition
Publisher:Springer
Place of publishing:Heidelberg
Publication type:Article
Language:English
Date of first publication:2022/06/06
Publication year:2022
Release date:2024/04/25
Tag:Dairy biomarkers; Dietary compliance; Dietary fat composition; Dietary fat replacement; Food-exchange model
Volume:61
Issue:7
Number of pages:16
First page:3669
Last Page:3684
Funding institution:Biotechnology and Biological Sciences Research Council (BBSRC); [BB/P010245/1, BB/P009891/1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
DDC classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
6 Technik, Medizin, angewandte Wissenschaften / 63 Landwirtschaft / 630 Landwirtschaft und verwandte Bereiche
6 Technik, Medizin, angewandte Wissenschaften / 64 Hauswirtschaft und Familie / 640 Hauswirtschaft und Familie
Peer review:Referiert
Publishing method:Open Access / Hybrid Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.