• search hit 7 of 11
Back to Result List

Neogene-Quaternary slow coastal uplift of Western Europe through the perspective of sequences of strandlines from the Cotentin Peninsula (Normandy, France)

  • The Cotentin Peninsula (Normandy, France) displays sequences of marine terraces and rasas, the latter being wide Late Cenozoic coastal erosion surfaces, that are typical of Western European coasts in Portugal, Spain, France and southern England. Remote sensing imagery and field mapping enabled reappraisal of the Cotentin coastal sequences. From bottom to top, the N Cotentin sequence includes four previously recognized Pleistocene marine terraces (T1 to T4) at elevations <40 m as well as four higher and older rasas (R1 to R4) reaching 200 +/- 5 m in elevation. Low-standing marine terraces are not observed in the central part of the Peninsula and a limited number of terraces are described to the south. The high-standing rasas are widespread all over the peninsula. Such strandline distributions reveal major changes during the Late Cenozoic. Progressive uplift of an irregular sea-floor led to subaerial exposure of bathymetric highs that were carved into rocky platforms, rasas and marine terraces. Eventually, five main islands coalescedThe Cotentin Peninsula (Normandy, France) displays sequences of marine terraces and rasas, the latter being wide Late Cenozoic coastal erosion surfaces, that are typical of Western European coasts in Portugal, Spain, France and southern England. Remote sensing imagery and field mapping enabled reappraisal of the Cotentin coastal sequences. From bottom to top, the N Cotentin sequence includes four previously recognized Pleistocene marine terraces (T1 to T4) at elevations <40 m as well as four higher and older rasas (R1 to R4) reaching 200 +/- 5 m in elevation. Low-standing marine terraces are not observed in the central part of the Peninsula and a limited number of terraces are described to the south. The high-standing rasas are widespread all over the peninsula. Such strandline distributions reveal major changes during the Late Cenozoic. Progressive uplift of an irregular sea-floor led to subaerial exposure of bathymetric highs that were carved into rocky platforms, rasas and marine terraces. Eventually, five main islands coalesced and connected to the mainland to the south to form the Cotentin Peninsula. On the basis of previous dating of the last interglacial maximum terrace (i.e. Marine Isotopic Stage, MIS 5e), sequential morphostratigraphy and modelling, we have reappraised uplift rates and derived: (i) mean Upper Pleistocene (i.e. since MIS 5e similar to 122 +/- 6 ka, i.e. kilo annum) apparent uplift rates of 0.04 +/- 0.01 mm/yr, (ii) mean Middle Pleistocene eustasy-corrected uplift rates of 0.09 +/- 0.03 mm/yr, and (iii) low mean Pleistocene uplift rates of 0.01 mm/yr. Extrapolations of these slow rates combined with geological evidence implies that the formation of the sequences from the Cotentin Peninsula occurred between 3 Ma (Pliocene) and 15 Ma (Miocene), which cannot be narrowed down further without additional research. Along the coasts of Western Europe, sequences of marine terraces and rasas are widespread (169 preserve the MIS Se benchmark). In Spain, Portugal, S England and other parts of western France, the sequences morphostratigraphy is very similar to that of Cotentin. The onset of such Western European sequences occurred during the Miocene (e.g. Spain) or Pliocene (e.g. Portugal). We interpret this Neogene-Quaternary coastal uplift as a symptom of the increasing lithospheric compression that accompanies Cenozoic orogenies. (C) 2017 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:K. Pedoja, Julius Jara-MunozORCiDGND, G. De Gelder, J. Robertson, M. Meschis, D. Fernandez-Blanco, M. Nexer, Y. Poprawski, O. Dugue, B. Delcaillau, P. Bessin, M. Benabdelouahed, C. Authemayou, L. Husson, V. Regard, D. Menier, B. Pinel
DOI:https://doi.org/10.1016/j.geomorph.2017.11.021
ISSN:0169-555X
ISSN:1872-695X
Title of parent work (English):Geomorphology : an international journal on pure and applied geomorphology
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Date of first publication:2017/12/09
Publication year:2017
Release date:2022/01/19
Tag:Cotentin and Western Europe; Marine terrace; Neogene and Quaternary coastal uplift; Rasa
Volume:303
Number of pages:19
First page:338
Last Page:356
Funding institution:ANR GiSeLEFrench National Research Agency (ANR); INSU programme Sulamer Hople
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.