• search hit 2 of 6
Back to Result List

The mass balance of earthquakes and earthquake sequences

  • Large, compressional earthquakes cause surface uplift aswell as widespread mass wasting. Knowledge of their trade-off is fragmentary. Combining a seismologically consistent model of earthquake-triggered landsliding and an analytical solution of coseismic surface displacement, we assess how the mass balance of single earthquakes and earthquake sequences depends on fault size and other geophysical parameters. We find that intermediate size earthquakes (M-w 6-7.3) may cause more erosion than uplift, controlled primarily by seismic source depth and landscape steepness, and less so by fault dip and rake. Such earthquakes can limit topographic growth, but our model indicates that both smaller and larger earthquakes (M-w < 6, M-w > 7.3) systematically cause mountain building. Earthquake sequences with a Gutenberg-Richter distribution have a greater tendency to lead to predominant erosion, than repeating earthquakes of the same magnitude, unless a fault can produce earthquakes with M-w > 8 or more.

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Odin Marc, Niels HoviusORCiDGND, P. Meunier
DOI:https://doi.org/10.1002/2016GL068333
ISSN:0094-8276
ISSN:1944-8007
Title of parent work (English):Geophysical research letters
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Volume:43
Number of pages:9
First page:3708
Last Page:3716
Funding institution:EU Marie-Curie Initial Training Network TOPOMOD [264517]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.