• search hit 1 of 1
Back to Result List

A persistent northern boundary of Indian Summer Monsoon precipitation over Central Asia during the Holocene

  • Extra-tropical circulation systems impede poleward moisture advection by the Indian Summer Monsoon. In this context, the Himalayan range is believed to insulate the south Asian circulation from extra-tropical influences and to delineate the northern extent of the Indian Summer Monsoon in central Asia. Paleoclimatic evidence, however, suggests increased moisture availability in the Early Holocene north of the Himalayan range which is attributed to an intensification of the Indian Summer Monsoon. Nevertheless, mechanisms leading to a surpassing of the Himalayan range and the northern maximum extent of summer monsoonal influence remain unknown. Here we show that the Kunlun barrier on the northern Tibetan Plateau [similar to 36 degrees N] delimits Indian Summer Monsoon precipitation during the Holocene. The presence of the barrier relocates the insulation effect 1,000 km further north, allowing a continental low intensity branch of the Indian Summer Monsoon which is persistent throughout the Holocene. Precipitation intensities at itsExtra-tropical circulation systems impede poleward moisture advection by the Indian Summer Monsoon. In this context, the Himalayan range is believed to insulate the south Asian circulation from extra-tropical influences and to delineate the northern extent of the Indian Summer Monsoon in central Asia. Paleoclimatic evidence, however, suggests increased moisture availability in the Early Holocene north of the Himalayan range which is attributed to an intensification of the Indian Summer Monsoon. Nevertheless, mechanisms leading to a surpassing of the Himalayan range and the northern maximum extent of summer monsoonal influence remain unknown. Here we show that the Kunlun barrier on the northern Tibetan Plateau [similar to 36 degrees N] delimits Indian Summer Monsoon precipitation during the Holocene. The presence of the barrier relocates the insulation effect 1,000 km further north, allowing a continental low intensity branch of the Indian Summer Monsoon which is persistent throughout the Holocene. Precipitation intensities at its northern extent seem to be driven by differentiated solar heating of the Northern Hemisphere indicating dependency on energy-gradients rather than absolute radiation intensities. The identified spatial constraints of monsoonal precipitation will facilitate the prediction of future monsoonal precipitation patterns in Central Asia under varying climatic conditions.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Arne RamischORCiDGND, Gregori Lockot, Torsten Haberzettl, Kai HartmannORCiD, Gerhard Kuhn, Frank Lehmkuhl, Stefan Schimpf, Philipp Schulte, Georg Stauch, Rong Wang, Bernd Wunnemann, Dada Yan, Yongzhan Zhang, Bernhard DiekmannORCiD
DOI:https://doi.org/10.1038/srep25791
ISSN:2045-2322
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/27173918
Title of parent work (English):Scientific reports
Publisher:Nature Publ. Group
Place of publishing:London
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Volume:6
Number of pages:7
First page:596
Last Page:633
Funding institution:Deutsche Forschungsgemeinschaft (DFG) [1372]; Alfred Wegener Institute for Polar and Marine Research (AWI), Potsdam
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.