• search hit 5 of 5
Back to Result List

Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope

  • Arch filament systems occur in active sunspot groups, where a fibril structure connects areas of opposite magnetic polarity, in contrast to active region filaments that follow the polarity inversion line. We used the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral lines SiI lambda 1082.7 nm, He I lambda 1083.0 nm, and Ca I lambda 1083.9 nm. We focus on the near-infrared calcium line to investigate the photospheric magnetic field and velocities, and use the line core intensities and velocities of the helium line to study the chromospheric plasma. The individual fibrils of the arch filament system connect the sunspot with patches of magnetic polarity opposite to that of the spot. These patches do not necessarily coincide with pores, where the magnetic field is strongest. Instead, areas are preferred not far from the polarity inversion line. These areas exhibit photospheric downflows of moderate velocity, but significantly higher downflows of up to 30 km s(-1) in the chromospheric helium line. OurArch filament systems occur in active sunspot groups, where a fibril structure connects areas of opposite magnetic polarity, in contrast to active region filaments that follow the polarity inversion line. We used the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral lines SiI lambda 1082.7 nm, He I lambda 1083.0 nm, and Ca I lambda 1083.9 nm. We focus on the near-infrared calcium line to investigate the photospheric magnetic field and velocities, and use the line core intensities and velocities of the helium line to study the chromospheric plasma. The individual fibrils of the arch filament system connect the sunspot with patches of magnetic polarity opposite to that of the spot. These patches do not necessarily coincide with pores, where the magnetic field is strongest. Instead, areas are preferred not far from the polarity inversion line. These areas exhibit photospheric downflows of moderate velocity, but significantly higher downflows of up to 30 km s(-1) in the chromospheric helium line. Our findings can be explained with new emerging flux where the matter flows downward along the field lines of rising flux tubes, in agreement with earlier results. (C) 2016 WILEY-VCH Verlag GmbH& Co. KGaA, Weinheimshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:H. Balthasar, P. Gömöry, Sergio Javier González ManriqueORCiD, Christoph KuckeinORCiD, J. Kavka, A. Kucera, P. Schwartz, R. Vaskova, T. Berkefeld, M. Collados Vera, Carsten DenkerORCiDGND, A. Feller, A. Hofmann, A. Lagg, H. Nicklas, D. Suarez, A. Pastor Yabar, R. Rezaei, R. Schlichenmaier, D. Schmidt, W. Schmidt, M. Sigwarth, M. Sobotka, S. K. Solanki, D. Soltau, J. Staude, Klaus G. StrassmeierORCiDGND, R. Volkmer, O. von der Lühe, T. Waldmann
DOI:https://doi.org/10.1002/asna.201612432
ISSN:0004-6337
ISSN:1521-3994
Title of parent work (English):Astronomische Nachrichten = Astronomical notes
Publisher:Wiley-VCH
Place of publishing:Weinheim
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Sun: filaments; Sun: photosphere; techniques: polarimetric; techniques: spectroscopic
Volume:337
Number of pages:7
First page:1050
Last Page:1056
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.