• search hit 1 of 1
Back to Result List

Testing the validity of productivity proxy indicators in high altitude Tso Moriri Lake, NW Himalaya (India)

  • We use multiple proxies (delta C-13(org), delta N-15(org), C/N, amino acids, biogenic silica) from the catchment, lake surface and core sediments to (i) identify the factors influencing conventional lacustrine primary productivity (LPP) indicators (isotopic covariance, C/N) in the sediments from the pristine high altitude Tso Moriri Lake during the late Quaternary, (ii) compare C/N and bulk organic isotopic data from the core with available biogenic silica and amino acid data to test the applicability of conventional LPP indicators during the late Quaternary, and (iii) evaluate the degree of sensitivity of LPP to climate change. Our results show that climate driven changes in water salinity and source water changes have influenced the isotopic (delta C-13, delta N-15) content of the lake water and hence the isotopic composition of bulk organic matter. Erosion has also played a role in masking the LPP as the catchment sediments from this high altitude lake have low C/N thereby casting doubt on the effectiveness of this parameter as anWe use multiple proxies (delta C-13(org), delta N-15(org), C/N, amino acids, biogenic silica) from the catchment, lake surface and core sediments to (i) identify the factors influencing conventional lacustrine primary productivity (LPP) indicators (isotopic covariance, C/N) in the sediments from the pristine high altitude Tso Moriri Lake during the late Quaternary, (ii) compare C/N and bulk organic isotopic data from the core with available biogenic silica and amino acid data to test the applicability of conventional LPP indicators during the late Quaternary, and (iii) evaluate the degree of sensitivity of LPP to climate change. Our results show that climate driven changes in water salinity and source water changes have influenced the isotopic (delta C-13, delta N-15) content of the lake water and hence the isotopic composition of bulk organic matter. Erosion has also played a role in masking the LPP as the catchment sediments from this high altitude lake have low C/N thereby casting doubt on the effectiveness of this parameter as an LPP indicator. Independent LPP indicators in Tso Moriri sediments clearly indicate that it is driven by climate change and increases during warmer periods. However, our data show that the LPP in recent times is not much higher than during the early Holocene, ruling out any impact of recent warming on LPP and therefore the possibility of large carbon sequestration in high altitude oligotrophic lakes. (C) 2016 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sushma PrasadORCiD, Praveen Kumar MishraORCiD, Philip Menzel, Birgit Gaye, Arshid Jehangir, Abdul R. Yousuf
DOI:https://doi.org/10.1016/j.palaeo.2016.02.027
ISSN:0031-0182
ISSN:1872-616X
Title of parent work (English):Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Indian monsoon; Tso Moriri Lake; isotopes; lacustrine primary productivity (LPP); late Quaternary
Volume:449
Number of pages:10
First page:421
Last Page:430
Funding institution:Deutsche ForschungsGemeinschaft [FOR 1380]; Deutsches GFZ Potsdam; Kashmir University
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.