• Treffer 6 von 11
Zurück zur Trefferliste

Electrochemical quartz crystal microbalance studies on cytochrome c/polyelectrode multilayer assemblies on gold electrodes

  • Polyelectrolyte multilayer assemblies containing proteins are of interest for applications such as sensors, bioreactors, and bioelectronics. A multilayer electrode was built up by the layer-by-layer strategy consisting of alternating layers of cytochrome c and poly(aniline sulfonic acid). The electrode showed a linear increase of redox active protein with the number of deposited layers. The principle of electrode preparation was transferred from needle electrodes to planar surfaces in order to further the understanding of electron transfer through the layer assembly by means of electrochemical quartz crystal microbalance studies. The deposition process was followed on-line by detection of the frequency shift of the crystals and was found to be rather fast (minutes). The total mass deposited was found to correlate well with the electrochemical response of the immobilized cyt.c. Furthermore, the influence of the polyelectrolyte was investigated by addition of PSS to the PASA solution. The strong interaction of the former polyelectrolytePolyelectrolyte multilayer assemblies containing proteins are of interest for applications such as sensors, bioreactors, and bioelectronics. A multilayer electrode was built up by the layer-by-layer strategy consisting of alternating layers of cytochrome c and poly(aniline sulfonic acid). The electrode showed a linear increase of redox active protein with the number of deposited layers. The principle of electrode preparation was transferred from needle electrodes to planar surfaces in order to further the understanding of electron transfer through the layer assembly by means of electrochemical quartz crystal microbalance studies. The deposition process was followed on-line by detection of the frequency shift of the crystals and was found to be rather fast (minutes). The total mass deposited was found to correlate well with the electrochemical response of the immobilized cyt.c. Furthermore, the influence of the polyelectrolyte was investigated by addition of PSS to the PASA solution. The strong interaction of the former polyelectrolyte seemed to hinder the electron transfer although a multilayer formation was proved. Dilution of the protein solution with redox inactive apo-cyt.c led to a strong decrease of the voltammetric signal, well beyond the percentage of apo-cyt.c inside the assembly. Thus, arguments for an electron transfer via protein-protein interaction were foundzeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Moritz Karl Beissenhirtz
Sonstige beteiligte Person(en):J. Kafka, D. Schäfer, M. Wolny, Fred Lisdat
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2005
Erscheinungsjahr:2005
Datum der Freischaltung:24.03.2017
Quelle:Electroanalysis. - 17 (2005), 21, S. 1931 - 1937
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.