• search hit 4 of 4
Back to Result List

Quantifying sediment supply at the end of the last glaciation: Dynamic reconstruction of an alpine debris-flow fan

  • In this paper we quantify the sediment dynamics in the formerly glaciated Zielbach catchment in the Italian Alps from the end of the Last Glacial Maximum (LGM) until today. As a basis for our quantification, we use the stratigraphic record offered by a 3.5 km(2) large fan that we explore with a seismic survey, stratigraphic analyses of drillhole material, and C-14 ages measured on organic matter encountered in these drillings. In addition, we calculate past denudation rate variability in the fan deposits using concentrations of cosmogenic Be-10. We merge this information into a scenario of how the sediment flux has changed through time and how this variability can be related to climatic variations, framed within well-known paraglacial models. The results document a highly complex natural system. From the LGM to the very early Holocene, ice-melted discharge and climate variability promoted a high sediment flux (sedimentation rate up to 40 mm/yr). This flux then dramatically decreased toward interglacial values (0.8 mm/yr at 5-4In this paper we quantify the sediment dynamics in the formerly glaciated Zielbach catchment in the Italian Alps from the end of the Last Glacial Maximum (LGM) until today. As a basis for our quantification, we use the stratigraphic record offered by a 3.5 km(2) large fan that we explore with a seismic survey, stratigraphic analyses of drillhole material, and C-14 ages measured on organic matter encountered in these drillings. In addition, we calculate past denudation rate variability in the fan deposits using concentrations of cosmogenic Be-10. We merge this information into a scenario of how the sediment flux has changed through time and how this variability can be related to climatic variations, framed within well-known paraglacial models. The results document a highly complex natural system. From the LGM to the very early Holocene, ice-melted discharge and climate variability promoted a high sediment flux (sedimentation rate up to 40 mm/yr). This flux then dramatically decreased toward interglacial values (0.8 mm/yr at 5-4 calibrated kyr B.P.). However, in contrast to the trend of classic paraglacial models, the flux recorded at Zielbach shows secondary peaks at 6.5 ka and 2.5 ka, with values of 13 mm/yr and 1.5 mm/yr, respectively. Paleo-denudation rates also decrease from similar to 33 mm/yr at the beginning of the Holocene to 0.42 mm/yr at 5 ka, with peaks of similar to 6 mm/yr and 1.1 mm/yr at 6.5 ka and 2.5 ka. High-amplitude climate change is the most likely cause of the secondary peaks, but anthropogenic activities may have contributed as well. The good correlation between paleo-sedimentation and paleo-denudation rates suggests that the majority of the deglaciated material destocked from the Zielbach catchment is stored in the alluvial fan.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sara SaviORCiD, Kevin P. Norton, Vincenzo Picotti, Naki Akcar, Romain Delunel, Francesco Brardinoni, Peter Kubik, Fritz Schlunegger
DOI:https://doi.org/10.1130/B30849.1
ISSN:0016-7606
ISSN:1943-2674
Title of parent work (English):Geological Society of America bulletin
Publisher:American Institute of Physics
Place of publishing:Boulder
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:126
Issue:5-6
Number of pages:18
First page:773
Last Page:790
Funding institution:ESF TopoEurope (CRP SedyMont-IP1); Swiss National Science Foundation [20T021-120464]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.