• search hit 4 of 5
Back to Result List

Multi-temporal surveys for microplastic particles enabled by a novel and fast application of SWIR imaging spectroscopy

  • Following the widespread assumption that a majority of ubiquitous marine microplastic particles originate from land-based sources, recent studies identify rivers as important pathways for microplastic particles (MPP) to the oceans. Yet a detailed understanding of the underlying processes and dominant sources is difficult to obtain with the existing accurate but extremely time-consuming methods available for the identification of MPP. Thus in the presented study, a novel approach applying short-wave infrared imaging spectroscopy for the quick and semi-automated identification of MPP is applied in combination with a multitemporal survey concept. Volume-reduced surface water samples were taken from transects at ten points along a major watercourse running through the South of Berlin, Germany, on six dates. After laboratory treatment, the samples were filtered onto glass fiber filters, scanned with an imaging spectrometer and analyzed by image processing. The presented method allows to count MPP, classify the plastic types and determineFollowing the widespread assumption that a majority of ubiquitous marine microplastic particles originate from land-based sources, recent studies identify rivers as important pathways for microplastic particles (MPP) to the oceans. Yet a detailed understanding of the underlying processes and dominant sources is difficult to obtain with the existing accurate but extremely time-consuming methods available for the identification of MPP. Thus in the presented study, a novel approach applying short-wave infrared imaging spectroscopy for the quick and semi-automated identification of MPP is applied in combination with a multitemporal survey concept. Volume-reduced surface water samples were taken from transects at ten points along a major watercourse running through the South of Berlin, Germany, on six dates. After laboratory treatment, the samples were filtered onto glass fiber filters, scanned with an imaging spectrometer and analyzed by image processing. The presented method allows to count MPP, classify the plastic types and determine particle sizes. At the present stage of development particles larger than 450 m in diameter can be identified and a visual validation showed that the results are reliable after a subsequent visual final check of certain typical error types. Therefore, the method has the potential to accelerate microplastic identification by complementing FTIR and Raman microspectroscopy. Technical advancements (e.g. new lens) will allow lower detection limits and a higher grade of automatization in the near future. The resulting microplastic concentrations in the water samples are discussed in a spatio-temporal context with respect to the influence (i) of urban areas, (ii) of effluents of three major Berlin wastewater treatment plants discharging into the canal and (iii) of precipitation events. Microplastic concentrations were higher downstream of the urban area and after precipitation. An increase in microplastic concentrations was discernible for the wastewater treatment plant located furthest upstream though not for the other two. (C) 2018 Elsevier Ltd. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Lena Katharina SchmidtORCiDGND, Mathias BochowORCiD, Hannes K. ImhofORCiD, Sascha Eric OswaldORCiDGND
DOI:https://doi.org/10.1016/j.envpol.2018.03.097
ISSN:0269-7491
ISSN:1873-6424
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/29684884
Title of parent work (English):Environmental pollution
Subtitle (English):Study of an urban watercourse traversing the city of Berlin, Germany
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2018
Publication year:2018
Release date:2021/10/20
Volume:239
Number of pages:11
First page:579
Last Page:589
Funding institution:German Federal Ministry for Economic Affairs and Energy ( [50EE1269]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.