• search hit 3 of 103
Back to Result List

Isotropic universe with almost scale-invariant fourth-order gravity

  • We study a class of isotropic cosmologies in the fourth-order gravity with Lagrangians of the form L = f(R) + k(G) where R and G are the Ricci and Gauss-Bonnet scalars, respectively. A general discussion is given on the conditions under which this gravitational Lagrangian is scale-invariant or almost scale-invariant. We then apply this general background to the specific case L = alpha R-2 + beta Gln G with constants alpha, beta. We find closed form cosmological solutions for this case. One interesting feature of this choice of f(R) and k(G) is that for very small negative value of the parameter beta, the Lagrangian L = R-2/3 + beta Gln G leads to the replacement of the exact de Sitter solution coming from L = R-2 (which is a local attractor) to an exact, power-law inflation solution a(t) = t(p) = t(-3/beta) which is also a local attractor. This shows how one can modify the dynamics from de Sitter to power-law inflation by the addition of a Gln G-term.

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Hans-Jürgen Schmidt, Douglas Singleton
DOI:https://doi.org/10.1063/1.4808255
ISSN:0022-2488
Title of parent work (English):Journal of mathematical physics
Publisher:American Institute of Physics
Place of publishing:Melville
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Volume:54
Issue:6
Number of pages:14
Funding institution:DAAD (Deutscher Akademischer Austauschdienst) grant; Fulbright Senior Scholars grant
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.