• search hit 2 of 27
Back to Result List

Calculation of Thermal Conductivity of Low-Porous, Isotropic Plutonic Rocks of the Crust at Ambient Conditions From Modal Mineralogy and Porosity

  • Thermal conductivity (lambda) is an essential physical property of minerals and rocks and fundamental in constraining the thermal field of the lithosphere. In case that adequate samples to measure lambda are not available, it could be indirectly inferred from calculation. One of the most widely applied indirect methods for rocks involve modal mineralogy and porosity as parameters that are incorporated into mathematical mean or mixing models. Robust inferences from these approaches for crystalline rocks were impeded by a small number of studied samples or restriction to certain rock types. We employ this method and examine its applicability to low-porosity plutonic rocks by calculating bulk thermal conductivity lambda(b) for 45 samples covering the entire range from gabbro/diorite to granite. We show that the use of the harmonic-mean model for both rock matrix and porosity provided a good match between lambda(b.meas) and lambda(b.calc) of <10% deviation (2 sigma), with relative and absolute errors amounting to 1.49.7% and 4.44.9%,Thermal conductivity (lambda) is an essential physical property of minerals and rocks and fundamental in constraining the thermal field of the lithosphere. In case that adequate samples to measure lambda are not available, it could be indirectly inferred from calculation. One of the most widely applied indirect methods for rocks involve modal mineralogy and porosity as parameters that are incorporated into mathematical mean or mixing models. Robust inferences from these approaches for crystalline rocks were impeded by a small number of studied samples or restriction to certain rock types. We employ this method and examine its applicability to low-porosity plutonic rocks by calculating bulk thermal conductivity lambda(b) for 45 samples covering the entire range from gabbro/diorite to granite. We show that the use of the harmonic-mean model for both rock matrix and porosity provided a good match between lambda(b.meas) and lambda(b.calc) of <10% deviation (2 sigma), with relative and absolute errors amounting to 1.49.7% and 4.44.9%, respectively. The results of our study constitute a big step forward to a robust conclusion on the overall applicability of the harmonic-mean model for inferring lambda(b) of isotropic, low-porosity, mafic to silicic plutonic and metamorphic rocks with an acceptable magnitude of error. Drill cuttings and enclaves form particularly interesting objects for application of this method, as they are poorly suited for direct measurement. Well-derived lambda values for those rocks would permit to calculate heat flow and to model more profoundly the thermal state of the deeper lithosphere.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sven FuchsORCiD, Hans-Jürgen FörsterGND, K. Braune, A. Förster
DOI:https://doi.org/10.1029/2018JB016287
ISSN:2169-9313
ISSN:2169-9356
Title of parent work (English):Journal of geophysical research : Solid earth
Subtitle (English):a Viable Alternative for Direct Measurement?
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Date of first publication:2018/09/24
Publication year:2018
Release date:2021/09/14
Volume:123
Issue:10
Number of pages:13
First page:8602
Last Page:8614
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.