• search hit 6 of 17
Back to Result List

Attribute-based analysis of time-lapse ground-penetrating radar data

  • Analysis of time-lapse ground-penetrating radar (GPR) data can provide information regarding subsurface hydrological processes, such as preferential flow. However, the analysis of time-lapse data is often limited by data quality; for example, for noisy input data, the interpretation of difference images is often difficult. Motivated by modern image-processing tools, we have developed two robust GPR attributes, which allow us to distinguish amplitude (contrast similarity) and time-shift (structural similarity) variations related to differences between individual time-lapse GPR data sets. We tested and evaluated our attributes using synthetic data of different complexity. Afterward, we applied them to a field data example, in which subsurface flow was induced by an artificial rainfall event. For all examples, we identified our structural similarity attribute to be a robust measure for highlighting time-lapse changes also in data with low signal-to-noise ratios. We determined that our new attribute-based workflow is a promising tool toAnalysis of time-lapse ground-penetrating radar (GPR) data can provide information regarding subsurface hydrological processes, such as preferential flow. However, the analysis of time-lapse data is often limited by data quality; for example, for noisy input data, the interpretation of difference images is often difficult. Motivated by modern image-processing tools, we have developed two robust GPR attributes, which allow us to distinguish amplitude (contrast similarity) and time-shift (structural similarity) variations related to differences between individual time-lapse GPR data sets. We tested and evaluated our attributes using synthetic data of different complexity. Afterward, we applied them to a field data example, in which subsurface flow was induced by an artificial rainfall event. For all examples, we identified our structural similarity attribute to be a robust measure for highlighting time-lapse changes also in data with low signal-to-noise ratios. We determined that our new attribute-based workflow is a promising tool to analyze time-lapse GPR data, especially for imaging subsurface hydrological processes.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Niklas AllroggenORCiDGND, Jens TronickeORCiDGND
DOI:https://doi.org/10.1190/GEO2015-0171.1
ISSN:0016-8033
ISSN:1942-2156
Title of parent work (English):Geophysics
Publisher:Society of Exploration Geophysicists
Place of publishing:Tulsa
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Volume:81
Number of pages:8
First page:H1
Last Page:H8
Funding institution:Deutsche Forschungsgemeinschaft within the research unit Catchments as Organized Systems (CAOS) [TR 512/5-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.