• search hit 1 of 1
Back to Result List

Soil moisture assessment over an alpine hillslope with significant soil heterogeneity

  • We strive to assess soil water content on a well-studied slow-moving hillslope in Austria. In doing so, we employ time lapse mapping of bulk electrical conductivity using a geophysical electromagnetic induction system operated at low induction numbers. This information is complemented by the acquisition of soil samples for gravimetric water content analysis during one survey campaign. Simple visual soil sample analysis reveals that the upper material in the survey area is a spatially highly variable mixture of predominately sandy, silty, clayey and organic materials. Due to this heterogeneity, classical approaches of mapping soil moisture on the basis of stationary mapping of electrical conductivity variations are not successful. Also the time-lapse approach does not allow ruling out some of the ambiguity inherent to the linkage of bulk electrical conductivity to soil water content. However, indication is found that time-lapse measurements may have supportive capabilities to identify regions of low precipitation infiltration due toWe strive to assess soil water content on a well-studied slow-moving hillslope in Austria. In doing so, we employ time lapse mapping of bulk electrical conductivity using a geophysical electromagnetic induction system operated at low induction numbers. This information is complemented by the acquisition of soil samples for gravimetric water content analysis during one survey campaign. Simple visual soil sample analysis reveals that the upper material in the survey area is a spatially highly variable mixture of predominately sandy, silty, clayey and organic materials. Due to this heterogeneity, classical approaches of mapping soil moisture on the basis of stationary mapping of electrical conductivity variations are not successful. Also the time-lapse approach does not allow ruling out some of the ambiguity inherent to the linkage of bulk electrical conductivity to soil water content. However, indication is found that time-lapse measurements may have supportive capabilities to identify regions of low precipitation infiltration due to high soil saturation. Furthermore, the relationship between the mean electrical conductivity averaged over a full vegetation period and an already available ecological moisture map produced by vegetation analysis is found to resemble closely the relationship observed between gravimetric soil water content and electrical conductivity during the time of sample collection except for highly organic soils. This leads us to the assumption that the relative soil moisture distribution is temporarily stable except for those areas characterized by highly organic soils.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:David Sauer, Steffen Popp, Angela Dittfurth, Daniel Altdorff, Peter Dietrich, Hendrik PaascheGND
DOI:https://doi.org/10.2136/vzj2013.01.0009
ISSN:1539-1663
Title of parent work (English):Vadose zone journal
Publisher:Soil Science Society of America
Place of publishing:Madison
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Volume:12
Issue:4
Number of pages:12
Funding institution:German Research Foundation (DFG), DFG research unit [581/2]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.