• search hit 2 of 49
Back to Result List

Aeroacoustical coupling and synchronization of organ pipes

  • A synchronization experiment on two mutual interacting organ pipes is compared with a theoretical model which takes into account the coupling mechanisms by the underlying first principles of fluid mechanics and aeroacoustics. The focus is on the Arnold-tongue, a mathematical object in the parameter space of detuning and coupling strength which quantitatively captures the interaction of the synchronized sound sources. From the experiment, a nonlinearly shaped Arnold-tongue is obtained, describing the coupling of the synchronized pipe-pipe system. This is in contrast to the linear shaped Arnold-tongue found in a preliminary experiment of the coupled system pipe-loudspeaker. To understand the experimental result, a coarse-grained model of two nonlinear coupled self-sustained oscillators is developed. The model, integrated numerically, is in very good agreement with the synchronization experiment for separation distances of the pipes in the far field and in the intermediate field. The methods introduced open the door for a deeperA synchronization experiment on two mutual interacting organ pipes is compared with a theoretical model which takes into account the coupling mechanisms by the underlying first principles of fluid mechanics and aeroacoustics. The focus is on the Arnold-tongue, a mathematical object in the parameter space of detuning and coupling strength which quantitatively captures the interaction of the synchronized sound sources. From the experiment, a nonlinearly shaped Arnold-tongue is obtained, describing the coupling of the synchronized pipe-pipe system. This is in contrast to the linear shaped Arnold-tongue found in a preliminary experiment of the coupled system pipe-loudspeaker. To understand the experimental result, a coarse-grained model of two nonlinear coupled self-sustained oscillators is developed. The model, integrated numerically, is in very good agreement with the synchronization experiment for separation distances of the pipes in the far field and in the intermediate field. The methods introduced open the door for a deeper understanding of the fundamental processes of sound generation and the coupling mechanisms on mutual interacting acoustic oscillators. (C) 2016 Acoustical Society of America.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jost Leonhardt Fischer, Rolf Bader, Markus AbelORCiDGND
DOI:https://doi.org/10.1121/1.4964135
ISSN:0001-4966
ISSN:1520-8524
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/27794343
Title of parent work (English):The journal of the Acoustical Society of America
Publisher:American Institute of Physics
Place of publishing:Melville
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Volume:140
Number of pages:8
First page:2344
Last Page:2351
Funding institution:ZIM grant "Synchronization in Organ Pipes"
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.