• search hit 1 of 4
Back to Result List

An expanded ostracod-based conductivity transfer function for climate reconstruction in the Levant

  • We present the first modern calibration dataset linking ostracod assemblage composition to water chemistry, and other site-specific variables, in the hydrologically and geopolitically sensitive southern Levant region. A total of 42 ostracod taxa were recorded from the 178 sampled sites in Israel and Jordan. Ilyocypris spp., Heterocypris salina and Cypridopsis vidua are the most abundant taxa. Species strictly confined to freshwater conditions are Prionocypris zenkeri, Gomphocythere ortali and Prionocypris olivaceus. In contrast, H. sauna, Bradleytriebella lineata and Cyprideis torosa show high frequencies in brackish waters (waters with higher conductivity). Humphcypris subterranea, G. ortali, P. olivaceus and Cypridopsis elongata apparently prefer flowing waters. Specific conductivity optima and tolerance ranges were calculated for the recorded ostracod species and may be used for the palaeoenvironmental assessment of fossil ostracod assemblages. In addition, a transfer-function for quantitative specific conductivity estimation basedWe present the first modern calibration dataset linking ostracod assemblage composition to water chemistry, and other site-specific variables, in the hydrologically and geopolitically sensitive southern Levant region. A total of 42 ostracod taxa were recorded from the 178 sampled sites in Israel and Jordan. Ilyocypris spp., Heterocypris salina and Cypridopsis vidua are the most abundant taxa. Species strictly confined to freshwater conditions are Prionocypris zenkeri, Gomphocythere ortali and Prionocypris olivaceus. In contrast, H. sauna, Bradleytriebella lineata and Cyprideis torosa show high frequencies in brackish waters (waters with higher conductivity). Humphcypris subterranea, G. ortali, P. olivaceus and Cypridopsis elongata apparently prefer flowing waters. Specific conductivity optima and tolerance ranges were calculated for the recorded ostracod species and may be used for the palaeoenvironmental assessment of fossil ostracod assemblages. In addition, a transfer-function for quantitative specific conductivity estimation based on 141 samples was established with weighted averaging partial least squares regression (WA-PLS). The resulting coefficient of determination r(2) between observed and predicted conductivity values (0.72) and the root-mean-square error of prediction (RMSEP) in % gradient length (13.1) indicate that conductivity may be reliably estimated from ostracod assemblage data. The transfer function was first applied to last glacial ostracod assemblage data from an archaeological trench in the Sea of Galilee (northern Israel). Relatively large conductivity fluctuations between ca 1 and 7 mS cm(-1) were inferred for the period 24-20 cal ka BP. In addition, four episodes of freshwater influx near the site of the trench were identified from the presence of shells of freshwater and stream-dwelling species intermingled with very abundant shells of Cyprideis torosa. The results of our study allow a better use of Quaternary ostracods from the Levant as palaeoenvironmental indicators of water-body types and past conductivity levels and will contribute to a better understanding of Quaternary environmental and climate change in the Levant. (C) 2014 Elsevier Ltd. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Steffen MischkeORCiDGND, Ahuva Almogi-Labin, Bety Al-Saqarat, Arik Rosenfeld, Hadar Elyashiv, Ian Boomer, Mordechai Stein, Lilach Lev, Emi Ito
DOI:https://doi.org/10.1016/j.quascirev.2014.04.004
ISSN:0277-3791
Title of parent work (English):Quaternary science reviews : the international multidisciplinary research and review journal
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Tag:Conductivity; Near East; Ohalo Site; Ostracoda; Salinity; Sea of Galilee; Transfer function
Volume:93
Number of pages:15
First page:91
Last Page:105
Funding institution:Deutsche Forschungsgemeinschaft [Mi 730/13-1]; USA-Israel Bi-National Science Foundation [2010347]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.