• search hit 4 of 5
Back to Result List

Potato tuber (Solanum tuberosum L. cv Desiree) — characterization of starch interacting proteins and maltodextrin metabolism

Kartoffelknolle (Solanum tuberosum L. cv Desiree) - Charakterisierung von Stärke-interagierenden Proteinen und Maltodextrin-Stoffwechsel

  • Starch is a biopolymer for which, despite its simple composition, understanding the precise mechanism behind its formation and regulation has been challenging. Several approaches and bioanalytical tools can be used to expand the knowledge on the different parts involved in the starch metabolism. In this sense, a comprehensive analysis targeting two of the main groups of molecules involved in this process: proteins, as effectors/regulators of the starch metabolism, and maltodextrins as starch components and degradation products, was conducted in this research work using potato plants (Solanum tuberosum L. cv. Desiree) as model of study. On one side, proteins physically interacting to potato starch were isolated and analyzed through mass spectrometry and western blot for their identification. Alternatively, starch interacting proteins were explored in potato tubers from transgenic plants having antisense inhibition of starch-related enzymes and on tubers stored under variable environmental conditions. Most of the proteins recovered fromStarch is a biopolymer for which, despite its simple composition, understanding the precise mechanism behind its formation and regulation has been challenging. Several approaches and bioanalytical tools can be used to expand the knowledge on the different parts involved in the starch metabolism. In this sense, a comprehensive analysis targeting two of the main groups of molecules involved in this process: proteins, as effectors/regulators of the starch metabolism, and maltodextrins as starch components and degradation products, was conducted in this research work using potato plants (Solanum tuberosum L. cv. Desiree) as model of study. On one side, proteins physically interacting to potato starch were isolated and analyzed through mass spectrometry and western blot for their identification. Alternatively, starch interacting proteins were explored in potato tubers from transgenic plants having antisense inhibition of starch-related enzymes and on tubers stored under variable environmental conditions. Most of the proteins recovered from the starch granules corresponded to previously described proteins having a specific role in the starch metabolic pathway. Another set of proteins could be grouped as protease inhibitors, which were found weakly interacting to starch. Variations in the protein profile obtained after electrophoresis separation became clear when tubers were stored under different temperatures, indicating a differential expression of proteins in response to changing environmental conditions. On the other side, since maltodextrin metabolism is thought to be involved in both starch initiation and degradation, soluble maltooligosaccharide content in potato tubers was analyzed in this work under diverse experimental variables. For this, tuber disc samples from wild type and transgenic lines strongly repressing either the plastidial or cytosolic form of the -glucan phosphorylase and phosphoglucomutase were incubated with glucose, glucose-6-phosphate, and glucose-1-phosphate solutions to evaluate the influence of such enzymes on the conversion of the carbon sources into soluble maltodextrins, in comparison to wild-type samples. Relative maltodextrin amounts analyzed through capillary electrophoresis equipped with laser-induced fluorescence (CE-LIF) revealed that tuber discs could immediately uptake glucose-1-phosphate and use it to produce maltooligosaccharides with a degree of polymerization of up to 30 (DP30), in contrast to transgenic tubers with strong repression of the plastidial glucan phosphorylase. The results obtained from the maltodextrin analysis support previous indications that a specific transporter for glucose-1-phosphate may exist in both the plant cells and the plastidial membranes, thereby allowing a glucose-6-phosphate independent transport. Furthermore, it confirms that the plastidial glucan phosphorylase is responsible for producing longer maltooligosaccharides in the plastids by catalyzing a glucan polymerization reaction when glucose-1-phosphate is available. All these findings contribute to a better understanding of the role of the plastidial glucan phosphorylase as a key enzyme directly involved in the synthesis and degradation of glucans and their implication on starch metabolism.show moreshow less
  • Stärke ist ein Biopolymer, bei dem es trotz seiner einfachen Zusammensetzung schwierig ist, den genauen Mechanismus seiner Bildung und Regulierung zu verstehen. Verschiedene Ansätze und bioanalytische Instrumente können genutzt werden, um das Wissen über die verschiedenen am Stärkemetabolismus beteiligten Komponenten zu erweitern. In diesem Sinne wurde in dieser Forschungsarbeit eine umfassende Analyse durchgeführt, die auf zwei der wichtigsten Molekülgruppen abzielt, die an diesem Prozess beteiligt sind: Proteine als Effektoren/Regulatoren des Stärkestoffwechsels und Maltodextrine als Stärkebestandteile und Abbauprodukte, wobei Kartoffelpflanzen (Solanum tuberosum L. cv. Desiree) als Untersuchungsmodell dienten. Einerseits wurden Proteine, die physisch mit Kartoffelstärke interagieren, isoliert und mittels Massenspektrometrie und Western Blot analysiert, um sie zu identifizieren. Andererseits wurden die mit Stärke interagierenden Proteine in Kartoffelknollen von transgenen Pflanzen mit Antisense-Hemmung von stärkeverwandten EnzymenStärke ist ein Biopolymer, bei dem es trotz seiner einfachen Zusammensetzung schwierig ist, den genauen Mechanismus seiner Bildung und Regulierung zu verstehen. Verschiedene Ansätze und bioanalytische Instrumente können genutzt werden, um das Wissen über die verschiedenen am Stärkemetabolismus beteiligten Komponenten zu erweitern. In diesem Sinne wurde in dieser Forschungsarbeit eine umfassende Analyse durchgeführt, die auf zwei der wichtigsten Molekülgruppen abzielt, die an diesem Prozess beteiligt sind: Proteine als Effektoren/Regulatoren des Stärkestoffwechsels und Maltodextrine als Stärkebestandteile und Abbauprodukte, wobei Kartoffelpflanzen (Solanum tuberosum L. cv. Desiree) als Untersuchungsmodell dienten. Einerseits wurden Proteine, die physisch mit Kartoffelstärke interagieren, isoliert und mittels Massenspektrometrie und Western Blot analysiert, um sie zu identifizieren. Andererseits wurden die mit Stärke interagierenden Proteine in Kartoffelknollen von transgenen Pflanzen mit Antisense-Hemmung von stärkeverwandten Enzymen und in Knollen, die unter variablen Umweltbedingungen gelagert wurden, untersucht. Die meisten der aus den Stärkekörnchen gewonnenen Proteine entsprachen zuvor beschriebenen Proteinen, die eine spezifische Rolle im Stärkestoffwechselweg spielen. Eine andere Gruppe von Proteinen konnte als Proteaseinhibitoren gruppiert werden, die nur schwach mit der Stärke interagieren. Variationen im Proteinprofil nach der Elektrophorese-Trennung wurden deutlich, wenn die Knollen bei unterschiedlichen Temperaturen gelagert wurden, was auf eine unterschiedliche Expression von Proteinen als Reaktion auf wechselnde Umweltbedingungen hindeutet. Da man davon ausgeht, dass der Maltodextrin-Stoffwechsel sowohl an der Entstehung als auch am Abbau von Stärke beteiligt ist, wurde in dieser Arbeit der Gehalt an löslichen Maltooligosacchariden in Kartoffelknollen unter verschiedenen experimentellen Variablen analysiert. Zu diesem Zweck wurden Knollenscheibenproben von Wildtypen und transgenen Linien, die entweder die plastidiale oder die cytosolische Form der α-Glucanphosphorylase und Phosphoglucomutase stark unterdrücken, mit Glucose-, Glucose-6-Phosphat- und Glucose-1-Phosphat-Lösungen inkubiert, um den Einfluss dieser Enzyme auf die Umwandlung der Kohlenstoffquellen in lösliche Maltodextrine im Vergleich zu Wildtyp-Proben zu bewerten. Relative Maltodextrinmengen, die durch Kapillarelektrophorese mit laserinduzierter Fluoreszenz (CE-LIF) analysiert wurden, zeigten, dass die Knollenscheiben Glukose-1-Phosphat sofort aufnehmen und zur Herstellung von Maltooligosacchariden mit einem Polymerisationsgrad von bis zu 30 (DP30) verwenden konnten, im Gegensatz zu transgenen Knollen mit starker Unterdrückung der plastidialen Glukanphosphorylase. Die Ergebnisse der Maltodextrin-Analyse stützen frühere Hinweise darauf, dass ein spezifischer Transporter für Glucose-1-Phosphat sowohl in den Pflanzenzellen als auch in den plastidialen Membranen vorhanden sein könnte, was einen von Glucose-6-Phosphat unabhängigen Transport ermöglicht. Außerdem wird bestätigt, dass die plastidiale Glucanphosphorylase für die Herstellung längerer Maltooligosaccharide in den Plastiden verantwortlich ist, indem sie eine Glucanpolymerisationsreaktion katalysiert, wenn Glucose-1-Phosphat verfügbar ist. All diese Erkenntnisse tragen zu einem besseren Verständnis der Rolle der plastidialen Glucanphosphorylase als Schlüsselenzym bei, das direkt an der Synthese und dem Abbau von Glucanen und deren Auswirkungen auf den Stärkemetabolismus beteiligt ist.show moreshow less

Download full text files

  • SHA-512:09f94bda5d2080ee2c5848e939c4a23fc99a8838fa3123af0a547368552e01593ebc3ec1e64279c964ef8bc59cf09b25bd005a470bc044e6cce6fafdd0ad5504

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Junio Flores CastellanosORCiDGND
URN:urn:nbn:de:kobv:517-opus4-615055
DOI:https://doi.org/10.25932/publishup-61505
Reviewer(s):Peter GeigenbergerORCiDGND, Uwe SonnewaldORCiDGND
Supervisor(s):Jörg Fettke, Alisdair R. Fernie
Publication type:Doctoral Thesis
Language:English
Publication year:2023
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2023/11/10
Release date:2023/12/18
Tag:Kartoffel; Maltodextrin; Solanum tuberosum; Stärke
Solanum tuberosum; maltodextrin; potato; starch
Number of pages:XV, 69
RVK - Regensburg classification:WN 3000
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.