• Treffer 1 von 1
Zurück zur Trefferliste

Extrapolating ecotoxicological effects from individuals to populations - a generic approach based on Dynamic Energy Budget theory and individual-based modeling

  • Individual-based models (IBMs) predict how dynamics at higher levels of biological organization emerge from individual-level processes. This makes them a particularly useful tool for ecotoxicology, where the effects of toxicants are measured at the individual level but protection goals are often aimed at the population level or higher. However, one drawback of IBMs is that they require significant effort and data to design for each species. A solution would be to develop IBMs for chemical risk assessment that are based on generic individual-level models and theory. Here we show how one generic theory, Dynamic Energy Budget (DEB) theory, can be used to extrapolate the effect of toxicants measured at the individual level to effects on population dynamics. DEB is based on first principles in bioenergetics and uses a common model structure to model all species. Parameterization for a certain species is done at the individual level and allows to predict population-level effects of toxicants for a wide range of environmental conditions andIndividual-based models (IBMs) predict how dynamics at higher levels of biological organization emerge from individual-level processes. This makes them a particularly useful tool for ecotoxicology, where the effects of toxicants are measured at the individual level but protection goals are often aimed at the population level or higher. However, one drawback of IBMs is that they require significant effort and data to design for each species. A solution would be to develop IBMs for chemical risk assessment that are based on generic individual-level models and theory. Here we show how one generic theory, Dynamic Energy Budget (DEB) theory, can be used to extrapolate the effect of toxicants measured at the individual level to effects on population dynamics. DEB is based on first principles in bioenergetics and uses a common model structure to model all species. Parameterization for a certain species is done at the individual level and allows to predict population-level effects of toxicants for a wide range of environmental conditions and toxicant concentrations. We present the general approach, which in principle can be used for all animal species, and give an example using Daphnia magna exposed to 3,4-dichloroaniline. We conclude that our generic approach holds great potential for standardized ecological risk assessment based on ecological models. Currently, available data from standard tests can directly be used for parameterization under certain circumstances, but with limited extra effort standard tests at the individual would deliver data that could considerably improve the applicability and precision of extrapolation to the population level. Specifically, the measurement of a toxicant's effect on growth in addition to reproduction, and presenting data over time as opposed to reporting a single EC50 or dose response curve at one time point.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Benjamin T. Martin, Tjalling Jager, Roger M. Nisbet, Thomas G. Preuss, Monika Hammers-Wirtz, Volker GrimmORCiDGND
DOI:https://doi.org/10.1007/s10646-013-1049-x
ISSN:0963-9292
Titel des übergeordneten Werks (Englisch):Ecotoxicology
Verlag:Springer
Verlagsort:Dordrecht
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2013
Erscheinungsjahr:2013
Datum der Freischaltung:26.03.2017
Freies Schlagwort / Tag:Dynamic Energy Budget; Effect model; Individual-based model; Physiological mode of action; Population; Sub-lethal effects
Band:22
Ausgabe:3
Seitenanzahl:10
Erste Seite:574
Letzte Seite:583
Fördernde Institution:European Union [PITN-GA-2009-238148]; US National Science Foundation [EF-0742521]; US National Science Foundation; US Environmental Protection Agency [EF 0830117]
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.