• search hit 10 of 12
Back to Result List

Novel basal, fungal lineages from freshwater phytoplankton and lake samples

  • Zoosporic fungal parasites are known to control the extent and development of blooms of numerous phytoplankton species. Despite the obvious importance of ecological interactions between parasitic fungi and their phytoplanktonic hosts, their diversity remains largely unknown due to methodological limitations. Here, a method to genetically analyse fungi directly from single, infected colonies of the phytoplanktonic host was applied to field samples of large diatom species from mesotrophic Lake Biwa and eutrophic Lake Inba, Japan. Although previous research on interaction between lacustrine fungi and large phytoplankton has mainly focused on the role of parasitic Chytridiomycota, our results revealed that fungi attached to large diatoms included not only members of Chytridiomycota, but also members of Aphelida, Cryptomycota and yeast. The fungi belonging to Chytridiomycota and Aphelida form novel, basal lineages. Environmental clone libraries also support the occurrence of these lineages in Japanese lakes. The presented method enables usZoosporic fungal parasites are known to control the extent and development of blooms of numerous phytoplankton species. Despite the obvious importance of ecological interactions between parasitic fungi and their phytoplanktonic hosts, their diversity remains largely unknown due to methodological limitations. Here, a method to genetically analyse fungi directly from single, infected colonies of the phytoplanktonic host was applied to field samples of large diatom species from mesotrophic Lake Biwa and eutrophic Lake Inba, Japan. Although previous research on interaction between lacustrine fungi and large phytoplankton has mainly focused on the role of parasitic Chytridiomycota, our results revealed that fungi attached to large diatoms included not only members of Chytridiomycota, but also members of Aphelida, Cryptomycota and yeast. The fungi belonging to Chytridiomycota and Aphelida form novel, basal lineages. Environmental clone libraries also support the occurrence of these lineages in Japanese lakes. The presented method enables us to better characterize individual fungal specimens on phytoplankton, and thus facilitate and improve the investigation of ecological relationships between fungi and phytoplankton in aquatic ecosystems.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Seiji Ishida, Daiki Nozaki, Hans-Peter GrossartORCiDGND, Maiko Kagami
DOI:https://doi.org/10.1111/1758-2229.12268
ISSN:1758-2229
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/25625632
Title of parent work (English):Environmental microbiology reports
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:7
Issue:3
Number of pages:7
First page:435
Last Page:441
Funding institution:Ministry of Education, Culture, Sports, and Technology of Japan [25281012]; JSPS-DAAD [RC 21315007]; Leibniz-MycoLink project
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.