• Treffer 3 von 3
Zurück zur Trefferliste

Error-controlled global sensitivity analysis of ordinary differential equations

  • We propose a novel strategy for global sensitivity analysis of ordinary differential equations. It is based on an error-controlled solution of the partial differential equation (PDE) that describes the evolution of the probability density function associated with the input uncertainty/variability. The density yields a more accurate estimate of the output uncertainty/variability, where not only some observables (such as mean and variance) but also structural properties (e.g., skewness, heavy tails, bi-modality) can be resolved up to a selected accuracy. For the adaptive solution of the PDE Cauchy problem we use the Rothe method with multiplicative error correction, which was originally developed for the solution of parabolic PDEs. We show that, unlike in parabolic problems, conservation properties necessitate a coupling of temporal and spatial accuracy to avoid accumulation of spatial approximation errors over time. We provide convergence conditions for the numerical scheme and suggest an implementation using approximate approximationsWe propose a novel strategy for global sensitivity analysis of ordinary differential equations. It is based on an error-controlled solution of the partial differential equation (PDE) that describes the evolution of the probability density function associated with the input uncertainty/variability. The density yields a more accurate estimate of the output uncertainty/variability, where not only some observables (such as mean and variance) but also structural properties (e.g., skewness, heavy tails, bi-modality) can be resolved up to a selected accuracy. For the adaptive solution of the PDE Cauchy problem we use the Rothe method with multiplicative error correction, which was originally developed for the solution of parabolic PDEs. We show that, unlike in parabolic problems, conservation properties necessitate a coupling of temporal and spatial accuracy to avoid accumulation of spatial approximation errors over time. We provide convergence conditions for the numerical scheme and suggest an implementation using approximate approximations for spatial discretization to efficiently resolve the coupling of temporal and spatial accuracy. The performance of the method is studied by means of low-dimensional case studies. The favorable properties of the spatial discretization technique suggest that this may be the starting point for an error-controlled sensitivity analysis in higher dimensions.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Andrea Y. Weiss, Wilhelm HuisingaORCiDGND
DOI:https://doi.org/10.1016/j.jcp.2011.05.011
ISSN:0021-9991
Titel des übergeordneten Werks (Englisch):Journal of computational physics
Verlag:Elsevier
Verlagsort:San Diego
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2011
Erscheinungsjahr:2011
Datum der Freischaltung:26.03.2017
Freies Schlagwort / Tag:Approximate approximations; Cauchy problem; Error control/adaptivity; Global sensitivity analysis; ODE with random initial conditions; Rothe method
Band:230
Ausgabe:17
Seitenanzahl:19
Erste Seite:6824
Letzte Seite:6842
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.