• search hit 1 of 5
Back to Result List

The influence of mineral characteristics on organic matter content, composition, and stability of topsoils under long-term arable and forest land use

  • In this study, we analyzed the influence of soil mineral characteristics (e. g., clay concentration and mineralogical composition, iron and aluminum oxide concentration and crystallinity, specific surface area, and exchangeable cation concentration) on (i) organic carbon (OC) content (kg m(-2)) and (ii) the concentration (g kg(-1)), composition, and stability of the mineral-associated organic matter (OM) of arable and forest topsoils. We selected seven soil types with different mineral characteristics for this study. For each soil type, samples were taken from topsoils of a deciduous forest and an adjacent arable site. The arable and forest sites have been used continuously for more than 100 years. Na-pyrophosphate soluble OM fractions (OM(PY)), representing mineral-associated OM, were extracted, analyzed for OC and C-14 concentrations, and characterized by FTIR spectroscopy. For the forest and arable topsoils, a linear relationship was found between the OC content and exchangeable Ca. For the arable topsoils (pH 6.7-7.5), correlationIn this study, we analyzed the influence of soil mineral characteristics (e. g., clay concentration and mineralogical composition, iron and aluminum oxide concentration and crystallinity, specific surface area, and exchangeable cation concentration) on (i) organic carbon (OC) content (kg m(-2)) and (ii) the concentration (g kg(-1)), composition, and stability of the mineral-associated organic matter (OM) of arable and forest topsoils. We selected seven soil types with different mineral characteristics for this study. For each soil type, samples were taken from topsoils of a deciduous forest and an adjacent arable site. The arable and forest sites have been used continuously for more than 100 years. Na-pyrophosphate soluble OM fractions (OM(PY)), representing mineral-associated OM, were extracted, analyzed for OC and C-14 concentrations, and characterized by FTIR spectroscopy. For the forest and arable topsoils, a linear relationship was found between the OC content and exchangeable Ca. For the arable topsoils (pH 6.7-7.5), correlation analyses indicated that the OCPY concentration increased with an increase in oxalate soluble Fe and Al, exchangeable Ca, and Na-pyrophosphate soluble Mg and Fe concentrations. The stability of OM(PY) determined by the C-14 measurements of the near-neutral arable topsoils was shown to increase with the specific surface area and the concentration of exchangeable Ca. For the acidic forest topsoils (pH < 5), the stability of OM(PY) was found to increase as the pH, and the concentration of C=O groups and Na-pyrophosphate soluble Mg increase.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:M. Kaiser, Ruth H. Ellerbrock, M. Wulf, S. Dultz, C. Hierath, M. Sommer
DOI:https://doi.org/10.1029/2011JG001712
ISSN:0148-0227
Title of parent work (English):Journal of geophysical research : Biogeosciences
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:117
Issue:4
Number of pages:16
Funding institution:Deutsche Forschungsgemeinschaft (DFG), Bonn [KA 2652 (1-1), KA 2652 (1-2)]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.