• Treffer 1 von 1
Zurück zur Trefferliste

Excited States of Xanthene Analogues: Photofragmentation and Calculations by CC2 and Time-Dependent Density Functional Theory

  • Action spectroscopy has emerged as an analytical tool to probe excited states in the gas phase. Although comparison of gas-phase absorption properties with quantum-chemical calculations is, in principle, straightforward, popular methods often fail to describe many molecules of interest-such as xanthene analogues. We, therefore, face their nano-and picosecond laser-induced photofragmentation with excited-state computations by using the CC2 method and time-dependent density functional theory (TDDFT). Whereas the extracted absorption maxima agree with CC2 predictions, the TDDFT excitation energies are blueshifted. Lowering the amount of Hartree-Fock exchange in the DFT functional can reduce this shift but at the cost of changing the nature of the excited state. Additional bandwidth observed in the photofragmentation spectra is rationalized in terms of multiphoton processes. Observed fragmentation from higher-lying excited states conforms to intense excited-to-excited state transitions calculated with CC2. The CC2 method is thus suitableAction spectroscopy has emerged as an analytical tool to probe excited states in the gas phase. Although comparison of gas-phase absorption properties with quantum-chemical calculations is, in principle, straightforward, popular methods often fail to describe many molecules of interest-such as xanthene analogues. We, therefore, face their nano-and picosecond laser-induced photofragmentation with excited-state computations by using the CC2 method and time-dependent density functional theory (TDDFT). Whereas the extracted absorption maxima agree with CC2 predictions, the TDDFT excitation energies are blueshifted. Lowering the amount of Hartree-Fock exchange in the DFT functional can reduce this shift but at the cost of changing the nature of the excited state. Additional bandwidth observed in the photofragmentation spectra is rationalized in terms of multiphoton processes. Observed fragmentation from higher-lying excited states conforms to intense excited-to-excited state transitions calculated with CC2. The CC2 method is thus suitable for the comparison with photofragmentation in xanthene analogues.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Alexander Jan Kulesza, Evgenii TitovORCiDGND, Steven Daly, Radoslaw Wlodarczyk, Jörg MegowGND, Peter SaalfrankORCiDGND, Chang Min Choi, Luke MacAleese, Rodolphe Antoine, Philippe Dugourd
DOI:https://doi.org/10.1002/cphc.201600650
ISSN:1439-4235
ISSN:1439-7641
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/27428813
Titel des übergeordneten Werks (Englisch):ChemPhysChem : a European journal of chemical physics and physical chemistry
Verlag:Wiley-VCH
Verlagsort:Weinheim
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Erscheinungsjahr:2016
Datum der Freischaltung:22.03.2020
Freies Schlagwort / Tag:CC2 calculations; density functional calculations; multiphoton processes; photofragmentation; xanthenes
Band:17
Seitenanzahl:10
Erste Seite:3129
Letzte Seite:3138
Fördernde Institution:COST Action [CM1405]; European Research Council under the European Union [320659]; International Max Planck Research School (IMPRS) on "Multiscale BioSystems"
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.