The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 33
Back to Result List

The Evolution of the He II-ionizing Background at Redshifts 2.3 < z < 3.8 Inferred from a Statistical Sample of 24 HST/COS He II Lyα Absorption Spectra

  • We present measurements of the large-scale (≈40 comoving Mpc) effective optical depth of He ii Lyα absorption, ${\tau }_{\mathrm{eff}}$, at 2.54 < z < 3.86 toward 16 He ii-transparent quasars observed with the Cosmic Origins Spectrograph on the Hubble Space Telescope, to characterize the ionization state of helium in the intergalactic medium (IGM). We provide the first statistical sample of ${\tau }_{\mathrm{eff}}$ measurements in six signal-to-noise ratio gsim3 He ii sightlines at z > 3.5, and study the redshift evolution and sightline-to-sightline variance of ${\tau }_{\mathrm{eff}}$ in 24 He ii sightlines. We confirm an increase of the median ${\tau }_{\mathrm{eff}}$ from sime2 at z = 2.7 to ${\tau }_{\mathrm{eff}}\gtrsim 5$ at z > 3, and a scatter in ${\tau }_{\mathrm{eff}}$ that increases with redshift. The z > 3.5 He ii absorption is predominantly saturated, but isolated narrow (Δv < 650 km s−1) transmission spikes indicate patches of reionized helium. We compare our measurements to predictions for a range of UV backgroundWe present measurements of the large-scale (≈40 comoving Mpc) effective optical depth of He ii Lyα absorption, ${\tau }_{\mathrm{eff}}$, at 2.54 < z < 3.86 toward 16 He ii-transparent quasars observed with the Cosmic Origins Spectrograph on the Hubble Space Telescope, to characterize the ionization state of helium in the intergalactic medium (IGM). We provide the first statistical sample of ${\tau }_{\mathrm{eff}}$ measurements in six signal-to-noise ratio gsim3 He ii sightlines at z > 3.5, and study the redshift evolution and sightline-to-sightline variance of ${\tau }_{\mathrm{eff}}$ in 24 He ii sightlines. We confirm an increase of the median ${\tau }_{\mathrm{eff}}$ from sime2 at z = 2.7 to ${\tau }_{\mathrm{eff}}\gtrsim 5$ at z > 3, and a scatter in ${\tau }_{\mathrm{eff}}$ that increases with redshift. The z > 3.5 He ii absorption is predominantly saturated, but isolated narrow (Δv < 650 km s−1) transmission spikes indicate patches of reionized helium. We compare our measurements to predictions for a range of UV background models applied to outputs of a large-volume (146 comoving Mpc)3 hydrodynamical simulation by forward-modeling our sample's quality and size. At z > 2.74, the variance in ${\tau }_{\mathrm{eff}}$ significantly exceeds expectations for a spatially uniform UV background, but is consistent with a fluctuating radiation field sourced by variations in the quasar number density and the mean free path in the post-reionization IGM. We develop a method to infer the approximate median He ii photoionization rate ${{\rm{\Gamma }}}_{\mathrm{He}{\rm{II}}}$ of a fluctuating UV background from the median ${\tau }_{\mathrm{eff}}$, finding a factor sime5 decrease in ${{\rm{\Gamma }}}_{\mathrm{He}{\rm{II}}}$ between z sime 2.6 and z sime 3.1. At z sime 3.1, ${{\rm{\Gamma }}}_{\mathrm{He}{\rm{II}}}=\left[{9.1}_{-1.2}^{+1.1}\,(\mathrm{stat}.){\,}_{-3.4}^{+2.4}\,(\mathrm{sys}.)\right]\times {10}^{-16}$ s−1 corresponds to a median He ii fraction of sime2.5%, indicating that our data probe the tail end of He ii reionization.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gabor WorseckORCiD, Frederick B. DaviesORCiDGND, Joseph F. HennawiORCiDGND, J. Xavier ProchaskaORCiDGND
DOI:https://doi.org/10.3847/1538-4357/ab0fa1
ISSN:0004-637X
ISSN:1538-4357
Title of parent work (English):The astrophysical journal : an international review of spectroscopy and astronomical physics
Publisher:IOP Publ. Ltd.
Place of publishing:Bristol
Publication type:Article
Language:English
Date of first publication:2019/04/22
Publication year:2019
Release date:2021/03/01
Tag:dark ages, reionization, first stars; diffuse radiation; intergalactic medium; quasars: absorption lines
Volume:875
Issue:2
Number of pages:25
Funding institution:NASA from the Space Telescope Science Institute [50 OR 1317, 50 OR 1512, HST-AR-15014]; NASANational Aeronautics & Space Administration (NASA) [NAS5-26555]; Deutsches Zentrum fur Luft- und Raumfahrt (DLR)Helmholtz AssociationGerman Aerospace Centre (DLR) [50 OR 1317, 50 OR 1512]; Alfred P. Sloan FoundationAlfred P. Sloan Foundation; National Science FoundationNational Science Foundation (NSF); U.S. Department of Energy Office of ScienceUnited States Department of Energy (DOE); University of Arizona; Brazilian Participation Group; Brookhaven National LaboratoryUnited States Department of Energy (DOE); Carnegie Mellon University; University of FloridaUniversity of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins UniversityJohns Hopkins University; Lawrence Berkeley National LaboratoryUnited States Department of Energy (DOE); Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State UniversityOhio State University; Pennsylvania State University; University of Portsmouth; Princeton UniversityPrinceton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of WashingtonUniversity of Washington; Yale University; National Aeronautics and Space Administration through the Planetary Science Division of the NASA Science Mission Directorate [NNX08AR22G]; National Science FoundationNational Science Foundation (NSF) [AST-1238877]; National Aeronautics and Space AdministrationNational Aeronautics & Space Administration (NASA)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.