• Treffer 3 von 5
Zurück zur Trefferliste

Rapid genetic differentiation between ex situ and their in situ source populations - an example of the endangered Silene otites (Caryophyllaceae)

  • Ex situ cultivation in botanic gardens could be one possibility to preserve plant species diversity and genetic variation. However, old ex situ populations are often sparsely documented. We were able to retrieve three different ex situ populations and their source in situ populations of the endangered plant species Silene otites after 20-36 years of isolation. Furthermore, three additional wild populations were included in the analysis. Population genetic diversity and differentiation were analysed using AFLP markers. Genetic variation in the ex situ populations was lower than the variation found in the in situ populations. Strong differentiation (F-ST = 0.21-0.36) between corresponding in situ and ex situ populations was observed. Bayesian clustering approach also showed a distinct genetic separation between in situ and ex situ populations. The high genetic differentiation and loss of genetic diversity during spatial and temporal isolation in the ex situ populations can be attributable to small population sizes and unconsciousEx situ cultivation in botanic gardens could be one possibility to preserve plant species diversity and genetic variation. However, old ex situ populations are often sparsely documented. We were able to retrieve three different ex situ populations and their source in situ populations of the endangered plant species Silene otites after 20-36 years of isolation. Furthermore, three additional wild populations were included in the analysis. Population genetic diversity and differentiation were analysed using AFLP markers. Genetic variation in the ex situ populations was lower than the variation found in the in situ populations. Strong differentiation (F-ST = 0.21-0.36) between corresponding in situ and ex situ populations was observed. Bayesian clustering approach also showed a distinct genetic separation between in situ and ex situ populations. The high genetic differentiation and loss of genetic diversity during spatial and temporal isolation in the ex situ populations can be attributable to small population sizes and unconscious selection during cultivation. Therefore, adequate sampling prior to ex situ cultivation and large effective population sizes are important to preserve genetic diversity. Near-natural cultivation allowing for generation overlap and interspecific competition without artificial selection is recommended as being best for the maintenance of the genetic constitution.zeige mehrzeige weniger

Metadaten exportieren

Weitere Dienste

Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Verfasserangaben:Daniel Lauterbach, Michael BurkartGND, Birgit Gemeinholzer
DOI:https://doi.org/10.1111/j.1095-8339.2011.01185.x
ISSN:0024-4074
Titel des übergeordneten Werks (Englisch):Botanical journal of the Linnean Society
Verlag:Wiley-Blackwell
Verlagsort:Hoboken
Publikationstyp:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2012
Erscheinungsjahr:2012
Datum der Freischaltung:26.03.2017
Freies Schlagwort / Tag:AFLP; botanical garden; conservation genetics; founder effect; population size
Band:168
Ausgabe:1
Seitenanzahl:12
Erste Seite:64
Letzte Seite:75
Fördernde Institution:DBU; Heidehofstiftung; friends of the Botanic Garden Berlin
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.