The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 12
Back to Result List

Acclimation to dietary shifts impacts the carbon budgets of Daphnia magna

  • Daphnia responds to low availability of carbon (food quantity) or limiting concentrations of nutrients relative to carbon (C) in excess (food quality) by respectively saving or discharging C via different pathways. We investigated which kind of food limitation leads to a faster regulation in Daphnia C budgets, and whether the pre-assimilative C pathways, ingestion and faeces egestion and the post-assimilative C pathways, excretion and respiration, are regulated concurrently. Daphnia magna were exposed to dietary shifts in different food quantities or qualities; food quality was varied in terms of the essential component, cholesterol. After acclimation to the new diet ranging from 0 to 96 h, C budgets were measured by a radiotracer technique. Dietary shifts in quantity and quality caused Daphnia to quickly adjust their C budgets within 6 h, but different C pathways were affected. A shift to low food quantity reduced Daphnia respiration indicating C retention. In contrast, sudden low quality food caused increased faeces egestion toDaphnia responds to low availability of carbon (food quantity) or limiting concentrations of nutrients relative to carbon (C) in excess (food quality) by respectively saving or discharging C via different pathways. We investigated which kind of food limitation leads to a faster regulation in Daphnia C budgets, and whether the pre-assimilative C pathways, ingestion and faeces egestion and the post-assimilative C pathways, excretion and respiration, are regulated concurrently. Daphnia magna were exposed to dietary shifts in different food quantities or qualities; food quality was varied in terms of the essential component, cholesterol. After acclimation to the new diet ranging from 0 to 96 h, C budgets were measured by a radiotracer technique. Dietary shifts in quantity and quality caused Daphnia to quickly adjust their C budgets within 6 h, but different C pathways were affected. A shift to low food quantity reduced Daphnia respiration indicating C retention. In contrast, sudden low quality food caused increased faeces egestion to discharge excess C. Furthermore, we observed a delayed increase in excretion but no change in respiration within the time frame studied. Such time-shifted responses appear to be an appropriate means to keep the costs of physiological adjustments relatively low, which in turn would benefit Daphnia performance.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Marcus Lukas, Alexander WackerORCiDGND
DOI:https://doi.org/10.1093/plankt/fbu018
ISSN:0142-7873
ISSN:1464-3774
Title of parent work (English):Journal of plankton research
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Tag:carbon pathway; cholesterol; food quality; food quantity; zooplankton
Volume:36
Issue:3
Number of pages:11
First page:848
Last Page:858
Funding institution:German Research Foundation (DFG) [WA 2445/5-1]; University Potsdam
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.