• search hit 2 of 3
Back to Result List

Investigating the role of meltwater versus precipitation seasonality in abrupt lake-level rise in the high-altitude Tso Moriri Lake (India)

  • We present late Quaternary lake level reconstruction from the high altitude Tso Moriri Lake (NW Indian Himalaya) using a combination of new and published data from shallow and deep water cores, and catchment geomorphology. Our reconstruction indicates two dramatic lake level increases - a late glacial (ca. 16.4-12.6 cal kyr B.P.) rise of 65 m, and a 47 m rise during the early Holocene wet phase (ca. 11.2-8.5 cal kyr B.P.) which are separated by the Younger Dryas (YD) event. We decouple the role of precipitation seasonality and snow melt using a combination of proxies sensitive to the Indian Summer Monsoon (ISM), and a regional spatio-temporal transect that provides information on the eastward penetration of the winter westerlies. A comparison of shallow and deep water cores shows that (i) the first lake level increase (similar to 65 m, ca. 16.4-12.6 cal kyr B.P.) is caused by melt water inflow triggered by the increasing summer insolation; (ii) the second lake level increase (similar to 47 m, 11.2-8.5 cal kyr B.P.) is largely causedWe present late Quaternary lake level reconstruction from the high altitude Tso Moriri Lake (NW Indian Himalaya) using a combination of new and published data from shallow and deep water cores, and catchment geomorphology. Our reconstruction indicates two dramatic lake level increases - a late glacial (ca. 16.4-12.6 cal kyr B.P.) rise of 65 m, and a 47 m rise during the early Holocene wet phase (ca. 11.2-8.5 cal kyr B.P.) which are separated by the Younger Dryas (YD) event. We decouple the role of precipitation seasonality and snow melt using a combination of proxies sensitive to the Indian Summer Monsoon (ISM), and a regional spatio-temporal transect that provides information on the eastward penetration of the winter westerlies. A comparison of shallow and deep water cores shows that (i) the first lake level increase (similar to 65 m, ca. 16.4-12.6 cal kyr B.P.) is caused by melt water inflow triggered by the increasing summer insolation; (ii) the second lake level increase (similar to 47 m, 11.2-8.5 cal kyr B.P.) is largely caused by a rise in annual precipitation coupled with reduced summer evaporation; (iii) in contrast to the onset of ISM (Bay of Bengal branch) at ca. 14.7 ka in lower elevations in NE India, the hydroclimatic influence of ISM in the high altitude Himalaya is seen only between 12.7 and 12 cal kyr B.P., though the influence of solar insolation (via increased snowmelt) is visible from 16.4 cal kyr B.P. onwards; (iv) the eastward penetration of westerlies in Indian Himalayas is strongly influenced by the strength of the Siberian High.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Praveen Kumar MishraORCiD, Sushma PrasadORCiD, Arshid Jehangir, Ambili Anoop, Abdul R. Yousuf, Birgit Gaye
DOI:https://doi.org/10.1016/j.palaeo.2017.12.026
ISSN:0031-0182
ISSN:1872-616X
Title of parent work (English):Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Date of first publication:2018/01/03
Publication year:2018
Release date:2022/01/05
Tag:Endogenic carbonates; Indian Summer Monsoon; Lake level reconstruction; Westerlies
Volume:493
Number of pages:10
First page:20
Last Page:29
Funding institution:Deutsche Forschungsgemeinschaft under the coordinated programme "Himalaya: Modern and Past Climates" (HIMPAC) [FOR 1380]; Deutsches GFZ Potsdam; Kashmir University
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.