• search hit 2 of 5
Back to Result List

Cosmic-ray hydrodynamics

  • Star formation in galaxies appears to be self-regulated by energetic feedback processes. Among the most promising agents of feedback are cosmic rays (CRs), the relativistic ion population of interstellar and intergalactic plasmas. In these environments, energetic CRs are virtually collisionless and interact via collective phenomena mediated by kinetic-scale plasma waves and large-scale magnetic fields. The enormous separation of kinetic and global astrophysical scales requires a hydrodynamic description. Here, we develop a new macroscopic theory for CR transport in the self-confinement picture, which includes CR diffusion and streaming. The interaction between CRs and electromagnetic fields of Alfvenic turbulence provides the main source of CR scattering, and causes CRs to stream along the magnetic field with the Alfven velocity if resonant waves are sufficiently energetic. However, numerical simulations struggle to capture this effect with current transport formalisms and adopt regularization schemes to ensure numerical stability. WeStar formation in galaxies appears to be self-regulated by energetic feedback processes. Among the most promising agents of feedback are cosmic rays (CRs), the relativistic ion population of interstellar and intergalactic plasmas. In these environments, energetic CRs are virtually collisionless and interact via collective phenomena mediated by kinetic-scale plasma waves and large-scale magnetic fields. The enormous separation of kinetic and global astrophysical scales requires a hydrodynamic description. Here, we develop a new macroscopic theory for CR transport in the self-confinement picture, which includes CR diffusion and streaming. The interaction between CRs and electromagnetic fields of Alfvenic turbulence provides the main source of CR scattering, and causes CRs to stream along the magnetic field with the Alfven velocity if resonant waves are sufficiently energetic. However, numerical simulations struggle to capture this effect with current transport formalisms and adopt regularization schemes to ensure numerical stability. We extent the theory by deriving an equation for the CRmomentum density along the mean magnetic field and include a transport equation for the Alfven-wave energy. We account for energy exchange of CRs and Alfven waves via the gyroresonant instability and include other wave damping mechanisms. Using numerical simulations, we demonstrate that our new theory enables stable, self-regulated CR transport. The theory is coupled to magnetohydrodynamics, conserves the total energy and momentum, and correctly recovers previous macroscopic CR transport formalisms in the steady-state flux limit. Because it is free of tunable parameters, it holds the promise to provide predictable simulations of CR feedback in galaxy formation.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:T. Thomas, Christoph PfrommerORCiDGND
DOI:https://doi.org/10.1093/mnras/stz263
ISSN:0035-8711
ISSN:1365-2966
Title of parent work (English):Monthly notices of the Royal Astronomical Society
Subtitle (English):alfvén-wave regulated transport of cosmic rays
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Date of first publication:2019/01/25
Publication year:2019
Release date:2021/02/17
Tag:cosmic rays; hydrodynamics; methods: analytical; methods: numerical; radiative transfer
Volume:485
Issue:3
Number of pages:32
First page:2977
Last Page:3008
Funding institution:European Research Council under ERC-CoG grant [CRAGSMAN-646955]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.