• search hit 1 of 2
Back to Result List

Cold gas accretion by high-velocity clouds and their connection to QSO Absorption-line systems

  • We combine H I 21 cm observations of the Milky Way, M31, and the local galaxy population with QSO absorption-line measurements to geometrically model the three-dimensional distribution of infalling neutral-gas clouds ("high-velocity clouds" (HVCs)) in the extended halos of low-redshift galaxies. We demonstrate that the observed distribution of HVCs around the Milky Way and M31 can be modeled by a radial exponential decline of the mean H I volume-filling factor in their halos. Our model suggests a characteristic radial extent of HVCs of R-halo similar to 50 kpc, a total H I mass in HVCs of similar to 10(8) M-circle dot, and a neutral-gas accretion rate of similar to 0.7 M-circle dot yr(-1) for M31/Milky-Way-type galaxies. Using a Holmberg-like luminosity scaling of the halo size of galaxies we estimate R-halo similar to 110 kpc for the most massive galaxies. The total absorption cross-section of HVCs at z approximate to 0 most likely is dominated by galaxies with total H I masses between 10(8.5) and 10(10) M-circle dot. Our modelWe combine H I 21 cm observations of the Milky Way, M31, and the local galaxy population with QSO absorption-line measurements to geometrically model the three-dimensional distribution of infalling neutral-gas clouds ("high-velocity clouds" (HVCs)) in the extended halos of low-redshift galaxies. We demonstrate that the observed distribution of HVCs around the Milky Way and M31 can be modeled by a radial exponential decline of the mean H I volume-filling factor in their halos. Our model suggests a characteristic radial extent of HVCs of R-halo similar to 50 kpc, a total H I mass in HVCs of similar to 10(8) M-circle dot, and a neutral-gas accretion rate of similar to 0.7 M-circle dot yr(-1) for M31/Milky-Way-type galaxies. Using a Holmberg-like luminosity scaling of the halo size of galaxies we estimate R-halo similar to 110 kpc for the most massive galaxies. The total absorption cross-section of HVCs at z approximate to 0 most likely is dominated by galaxies with total H I masses between 10(8.5) and 10(10) M-circle dot. Our model indicates that the H I disks of galaxies and their surrounding HVC population can account for 30%-100% of intervening QSO absorption-line systems with log N(H I) >= 17.5 at z approximate to 0. We estimate that the neutral-gas accretion rate density of galaxies at low redshift from infalling HVCs is dM(H) (I)/dt/dV approximate to 0.022 M-circle dot yr(-1) Mpc(-3), which is close to the measured star formation rate density in the local universe. HVCs thus may play an important role in the ongoing formation and evolution of galaxies.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Philipp RichterORCiDGND
DOI:https://doi.org/10.1088/0004-637X/750/2/165
ISSN:0004-637X
Title of parent work (English):The astrophysical journal : an international review of spectroscopy and astronomical physics
Publisher:IOP Publ. Ltd.
Place of publishing:Bristol
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:Galaxy: halo; ISM: clouds; quasars: absorption lines
Volume:750
Issue:2
Number of pages:11
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.