• search hit 1 of 5
Back to Result List

Spatio-temporal mapping of local soil pH changes induced by roots of lupin and soft-rush

  • The rhizosphere is a dynamic system strongly influenced by root activity. Roots modify the pH of their surrounding soil causing the soil pH to vary as a function of distance from root surface, location along root axes, and root maturity. Non-invasive imaging techniques provide the possibility to capture pH patterns around the roots as they develop. We developed a novel fluorescence imaging set up and applied to the root system of two lupin (Lupinus albus L., Lupinus angustifolius L.) and one soft-rush (Juncus effusus L.) species. We grew plants in glass containers filled with soil and equipped with fluorescence sensor foils on the container side walls. We gained highly-resolved data on the spatial distribution of H+ around the roots by taking time-lapse images of the samples over the course of several days. We showed how the soil pH in the vicinity of roots developed over time to different values from that of the original bulk soil. The soil pH in the immediate vicinity of the root surface varied greatly along the root length, withThe rhizosphere is a dynamic system strongly influenced by root activity. Roots modify the pH of their surrounding soil causing the soil pH to vary as a function of distance from root surface, location along root axes, and root maturity. Non-invasive imaging techniques provide the possibility to capture pH patterns around the roots as they develop. We developed a novel fluorescence imaging set up and applied to the root system of two lupin (Lupinus albus L., Lupinus angustifolius L.) and one soft-rush (Juncus effusus L.) species. We grew plants in glass containers filled with soil and equipped with fluorescence sensor foils on the container side walls. We gained highly-resolved data on the spatial distribution of H+ around the roots by taking time-lapse images of the samples over the course of several days. We showed how the soil pH in the vicinity of roots developed over time to different values from that of the original bulk soil. The soil pH in the immediate vicinity of the root surface varied greatly along the root length, with the most acidic point being at 0.56-3.36 mm behind the root tip. Indications were also found for temporal soil pH changes due to root maturity. In conclusion, this study shows that this novel optical fluorescence imaging set up is a powerful tool for studying pH developments around roots in situ.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Nicole Rudolph, Sebastian Voss, Ahmad B. Moradi, Stefan Nagl, Sascha Eric OswaldORCiDGND
DOI:https://doi.org/10.1007/s11104-013-1775-0
ISSN:0032-079X
Title of parent work (English):Plant and soil
Publisher:Springer
Place of publishing:Dordrecht
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:Acidification; Alkalization; Exudates; Fluorescence imaging; Optical sensors; Rhizosphere; pH mapping
Volume:369
Issue:1-2
Number of pages:12
First page:669
Last Page:680
Funding institution:German DFG [1315, OS 351/1-2]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.