• Treffer 5 von 5
Zurück zur Trefferliste

Non-Langevin Recombination in Fullerene and Non-Fullerene Acceptor Solar Cells

Nicht-Langevin-Rekombination in Fulleren- und Nicht-Fulleren-Akzeptor-Solarzellen

  • Organic solar cells (OSCs), in recent years, have shown high efficiencies through the development of novel non-fullerene acceptors (NFAs). Fullerene derivatives have been the centerpiece of the accepting materials used throughout organic photovoltaic (OPV) research. However, since 2015 novel NFAs have been a game-changer and have overtaken fullerenes. However, the current understanding of the properties of NFAs for OPV is still relatively limited and critical mechanisms defining the performance of OPVs are still topics of debate. In this thesis, attention is paid to understanding reduced-Langevin recombination with respect to the device physics properties of fullerene and non-fullerene systems. The work is comprised of four closely linked studies. The first is a detailed exploration of the fill factor (FF) expressed in terms of transport and recombination properties in a comparison of fullerene and non-fullerene acceptors. We investigated the key reason behind the reduced FF in the NFA (ITIC-based) devices which is fasterOrganic solar cells (OSCs), in recent years, have shown high efficiencies through the development of novel non-fullerene acceptors (NFAs). Fullerene derivatives have been the centerpiece of the accepting materials used throughout organic photovoltaic (OPV) research. However, since 2015 novel NFAs have been a game-changer and have overtaken fullerenes. However, the current understanding of the properties of NFAs for OPV is still relatively limited and critical mechanisms defining the performance of OPVs are still topics of debate. In this thesis, attention is paid to understanding reduced-Langevin recombination with respect to the device physics properties of fullerene and non-fullerene systems. The work is comprised of four closely linked studies. The first is a detailed exploration of the fill factor (FF) expressed in terms of transport and recombination properties in a comparison of fullerene and non-fullerene acceptors. We investigated the key reason behind the reduced FF in the NFA (ITIC-based) devices which is faster non-geminate recombination relative to the fullerene (PCBM[70]-based) devices. This is then followed by a consideration of a newly synthesized NFA Y-series derivative which exhibits the highest power conversion efficiency for OSC at the time. Such that in the second study, we illustrated the role of disorder on the non-geminate recombination and charge extraction of thick NFA (Y6-based) devices. As a result, we enhanced the FF of thick PM6:Y6 by reducing the disorder which leads to suppressing the non-geminate recombination toward non-Langevin system. In the third work, we revealed the reason behind thickness independence of the short circuit current of PM6:Y6 devices, caused by the extraordinarily long diffusion length of Y6. The fourth study entails a broad comparison of a selection of fullerene and non-fullerene blends with respect to charge generation efficiency and recombination to unveil the importance of efficient charge generation for achieving reduced recombination. I employed transient measurements such as Time Delayed Collection Field (TDCF), Resistance dependent Photovoltage (RPV), and steady-state techniques such as Bias Assisted Charge Extraction (BACE), Temperature-Dependent Space Charge Limited Current (T-SCLC), Capacitance-Voltage (CV), and Photo-Induce Absorption (PIA), to analyze the OSCs. The outcomes in this thesis together draw a complex picture of multiple factors that affect reduced-Langevin recombination and thereby the FF and overall performance. This provides a suitable platform for identifying important parameters when designing new blend systems. As a result, we succeeded to improve the overall performance through enhancing the FF of thick NFA device by adjustment of the amount of the solvent additive in the active blend solution. It also highlights potentially critical gaps in the current experimental understanding of fundamental charge interaction and recombination dynamics.zeige mehrzeige weniger
  • Organische Solarzellen (OSZ) haben in den letzten Jahren durch die Entwicklung neuartiger Nicht-Fulleren-Akzeptoren (NFA) hohe Wirkungsgrade erzielt. Fulleren-Derivate waren das Herzstück der Akzeptor-Materialien, die in der Forschung zur organischen Photovoltaik (OPV) verwendet wurden. Doch seit 2015 haben neuartige NFAs den Fullerenen den Rang abgelaufen. Allerdings ist das derzeitige Verständnis der Eigenschaften von NFA für OPV noch relativ begrenzt und kritische Mechanismen, die die Leistung von OPV bestimmen, sind immer noch Gegenstand von Diskussionen. In dieser Arbeit geht es um das Verständnis der Reduced-Langevin-Rekombination in Hinblick auf die bauteilphysikalischen Eigenschaften von Fulleren- und Nicht-Fulleren-Systemen. Die Arbeit besteht aus vier eng miteinander verbundenen Studien. Die erste ist eine detaillierte Untersuchung des Füllfaktors (FF), ausgedrückt als Transport- und Rekombinationseigenschaften in einem Vergleich von Fulleren und Nicht-Fulleren-Akzeptoren. Wir untersuchten den Hauptgrund für die geringereOrganische Solarzellen (OSZ) haben in den letzten Jahren durch die Entwicklung neuartiger Nicht-Fulleren-Akzeptoren (NFA) hohe Wirkungsgrade erzielt. Fulleren-Derivate waren das Herzstück der Akzeptor-Materialien, die in der Forschung zur organischen Photovoltaik (OPV) verwendet wurden. Doch seit 2015 haben neuartige NFAs den Fullerenen den Rang abgelaufen. Allerdings ist das derzeitige Verständnis der Eigenschaften von NFA für OPV noch relativ begrenzt und kritische Mechanismen, die die Leistung von OPV bestimmen, sind immer noch Gegenstand von Diskussionen. In dieser Arbeit geht es um das Verständnis der Reduced-Langevin-Rekombination in Hinblick auf die bauteilphysikalischen Eigenschaften von Fulleren- und Nicht-Fulleren-Systemen. Die Arbeit besteht aus vier eng miteinander verbundenen Studien. Die erste ist eine detaillierte Untersuchung des Füllfaktors (FF), ausgedrückt als Transport- und Rekombinationseigenschaften in einem Vergleich von Fulleren und Nicht-Fulleren-Akzeptoren. Wir untersuchten den Hauptgrund für die geringere FF im NFA-Bauelement (auf ITIC-Basis), nämlich die schnellere nicht-geminate Rekombination im Vergleich zum Fulleren-Bauelement (auf PCBM[70]-Basis). Anschließend wird ein neu synthetisiertes NFA-Derivat der Y-Serie betrachtet, das derzeit die höchste Leistungsumwandlungseffizienz für OSZ aufweist. In der zweiten Studie veranschaulichten wir die Rolle der Unordnung bei der nicht-geminaten Rekombination und der Ladungsextraktion von dicken NFA-Bauelementen (auf Y6-Basis). Infolgedessen haben wir die FF von dickem PM6:Y6 verbessert, indem wir die Unordnung reduziert haben, was zur Unterdrückung der nicht-geminaten Rekombination in Richtung Nicht-Langevin-System führt. In der dritten Arbeit haben wir den Grund für die Dickenunabhängigkeit des Kurzschlussstroms von NFA-Bauelementen aufgedeckt, die durch die außerordentlich lange Diffusionslänge von Y6 verursacht wird. Die vierte Studie umfasst einen umfassenden Vergleich einer Auswahl von Fulleren- und Nicht-Fulleren-Mischungen in Hinblick auf die Effizienz der Ladungserzeugung und Rekombination, um die Bedeutung einer effizienten Ladungserzeugung zum Erzielen einer geringeren Rekombination aufzuzeigen. Zur Analyse der OSCs habe ich transiente Messungen wie das Time Delayed Collection Field (TDCF), Resistance dependent Photovoltage (RPV) sowie stationäre Techniken wie die Bias Assisted Charge Extraction (BACE), Temperature-Dependent Space Charge Limited Current (T-SCLC), Capacitance-Voltage (CV) und Photo-Induce Absorption (PIA) eingesetzt. Die Ergebnisse dieser Arbeit zeichnen ein komplexes Bild zahlreicher Faktoren, die die Rekombination nach dem Prinzip des reduzierten Langèvins und damit die FF und die Gesamtleistung beeinflussen. Dies bietet eine geeignete Plattform zum Identifizieren wichtiger Parameter bei der Entwicklung neuer Mischsysteme. So ist es uns gelungen, die Gesamtleistung zu verbessern, indem wir die FF der dicken NFA-Vorrichtung durch Anpassung der Menge des Lösungsmittelzusatzes in der aktiven Mischungslösung erhöht haben. Außerdem werden potenziell kritische Lücken im derzeitigen experimentellen Verständnis der grundlegenden Ladungswechselwirkung und Rekombinationsdynamik aufgezeigt.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • SHA-512:1d97632e690f3f83850c1f9e9fde46604ac170d9c2551914facbfe5c1f7b558726f3014e05c3ed96036fefd154133b067af6dcf48ef7d5174fd1d6e2ecc9e4f9

Metadaten exportieren

Metadaten
Verfasserangaben:Seyed Mehrdad HosseiniORCiDGND
URN:urn:nbn:de:kobv:517-opus4-547831
DOI:https://doi.org/10.25932/publishup-54783
Gutachter*in(nen):Safa ShoaeeORCiDGND, Dieter NeherORCiDGND, James Robert Durrant
Betreuer*in(nen):Safa Shoaee, Dieter Neher
Publikationstyp:Dissertation
Sprache:Englisch
Datum der Erstveröffentlichung:26.04.2022
Erscheinungsjahr:2022
Veröffentlichende Institution:Universität Potsdam
Titel verleihende Institution:Universität Potsdam
Datum der Abschlussprüfung:18.02.2022
Datum der Freischaltung:26.04.2022
Freies Schlagwort / Tag:Ladungsrekombination; Nicht-Fulleren-Akzeptoren; Nicht-Langevin-Systeme; Organische Solarzellen; Strukturelle und energetische Unordnung
Charge recombination; Non-Langevin systems; Non-fullerene acceptors; Organic solar cells; Structural and energetic disorder
Seitenanzahl:XII, 103
RVK - Regensburger Verbundklassifikation:UP 8200, UQ 8300, ZP 3730
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Lizenz (Deutsch):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.