• search hit 1 of 2
Back to Result List

Distribution patterns and environmental drivers of methane-cycling microorganisms in natural environments and restored wetlands

  • Methane is an important greenhouse gas contributing to global climate change. Natural environments and restored wetlands contribute a large proportion to the global methane budget. Methanogenic archaea (methanogens) and methane oxidizing bacteria (methanotrophs), the biogenic producers and consumers of methane, play key roles in the methane cycle in those environments. A large number of studies revealed the distribution, diversity and composition of these microorganisms in individual habitats. However, uncertainties exist in predicting the response and feedback of methane-cycling microorganisms to future climate changes and related environmental changes due to the limited spatial scales considered so far, and due to a poor recognition of the biogeography of these important microorganisms combining global and local scales. With the aim of improving our understanding about whether and how methane-cycling microbial communities will be affected by a series of dynamic environmental factors in response to climate change, this PhD thesisMethane is an important greenhouse gas contributing to global climate change. Natural environments and restored wetlands contribute a large proportion to the global methane budget. Methanogenic archaea (methanogens) and methane oxidizing bacteria (methanotrophs), the biogenic producers and consumers of methane, play key roles in the methane cycle in those environments. A large number of studies revealed the distribution, diversity and composition of these microorganisms in individual habitats. However, uncertainties exist in predicting the response and feedback of methane-cycling microorganisms to future climate changes and related environmental changes due to the limited spatial scales considered so far, and due to a poor recognition of the biogeography of these important microorganisms combining global and local scales. With the aim of improving our understanding about whether and how methane-cycling microbial communities will be affected by a series of dynamic environmental factors in response to climate change, this PhD thesis investigates the biogeographic patterns of methane-cycling communities, and the driving factors which define these patterns at different spatial scales. At the global scale, a meta-analysis was performed by implementing 94 globally distributed public datasets together with environmental data from various natural environments including soils, lake sediments, estuaries, marine sediments, hydrothermal sediments and mud volcanos. In combination with a global biogeographic map of methanogenic archaea from multiple natural environments, this thesis revealed that biogeographic patterns of methanogens exist. The terrestrial habitats showed higher alpha diversities than marine environments. Methanoculleus and Methanosaeta (Methanothrix) are the most frequently detected taxa in marine habitats, while Methanoregula prevails in terrestrial habitats. Estuary ecosystems, the transition zones between marine and terrestrial/limnic ecosystems, have the highest methanogenic richness but comparably low methane emission rates. At the local scale, this study compared two rewetted fens with known high methane emissions in northeastern Germany, a coastal brackish fen (Hütelmoor) and a freshwater riparian fen (Polder Zarnekow). Consistent with different geochemical conditions and land-use history, the two rewetted fens exhibit dissimilar methanogenic and, especially, methanotrophic community compositions. The methanotrophic community was generally under-represented among the prokaryotic communities and both fens show similarly low ratios of methanotrophic to methanogenic abundances. Since few studies have characterized methane-cycling microorganisms in rewetted fens, this study provides first evidence that the rapid and well re-established methanogenic community in combination with the low and incomplete re-establishment of the methanotrophic community after rewetting contributes to elevated sustained methane fluxes following rewetting. Finally, this thesis demonstrates that dispersal limitation only slightly regulates the biogeographic distribution patterns of methanogenic microorganisms in natural environments and restored wetlands. Instead, their existence, adaption and establishment are more associated with the selective pressures under different environmental conditions. Salinity, pH and temperature are identified as the most important factors in shaping microbial community structure at different spatial scales (global versus terrestrial environments). Predicted changes in climate, such as increasing temperature, changes in precipitation patterns and increasing frequency of flooding events, are likely to induce a series of environmental alterations, which will either directly or indirectly affect the driving environmental forces of methanogenic communities, leading to changes in their community composition and thus potentially also in methane emission patterns in the future.show moreshow less
  • Methan ist ein wichtiges Treibhausgas, das zum globalen Klimawandel beiträgt. Bedeutend für das globale Methanbudget sind unter anderem natürliche und wiedervernäßte Moore. Methanogene Archaeen (Methanogene) und Methan-oxidierende Bakterien (Methanotrophe) sind die biogenen Produzenten und Konsumenten von Methan. Daher nehmen sie global, und speziell in Mooren, eine Schlüsselrolle für das Methanbudget ein. Eine Vielzahl von Studien hat die Verteilung, Vielfalt und Zusammensetzung dieser Mikroorganismen in einzelnen Lebensräumen untersucht. Es bestehen jedoch Unsicherheiten in der Vorhersage, wie sie auf den globalen Wandel und auf die damit verbundenen Umweltveränderungen reagieren werden. Diese Unsicherheiten basieren unter anderem auf bislang fehlenden biogeographischen Untersuchungen, die globale und lokale Skalen kombinieren, und auf einem unzureichenden Verständnis dazu, ob und welche Umweltfaktoren speziell methanogene Gemeinschaften beeinflussen. Zudem gibt es trotz der Bedeutung von Projekten zur Moorwiedervernässung für dasMethan ist ein wichtiges Treibhausgas, das zum globalen Klimawandel beiträgt. Bedeutend für das globale Methanbudget sind unter anderem natürliche und wiedervernäßte Moore. Methanogene Archaeen (Methanogene) und Methan-oxidierende Bakterien (Methanotrophe) sind die biogenen Produzenten und Konsumenten von Methan. Daher nehmen sie global, und speziell in Mooren, eine Schlüsselrolle für das Methanbudget ein. Eine Vielzahl von Studien hat die Verteilung, Vielfalt und Zusammensetzung dieser Mikroorganismen in einzelnen Lebensräumen untersucht. Es bestehen jedoch Unsicherheiten in der Vorhersage, wie sie auf den globalen Wandel und auf die damit verbundenen Umweltveränderungen reagieren werden. Diese Unsicherheiten basieren unter anderem auf bislang fehlenden biogeographischen Untersuchungen, die globale und lokale Skalen kombinieren, und auf einem unzureichenden Verständnis dazu, ob und welche Umweltfaktoren speziell methanogene Gemeinschaften beeinflussen. Zudem gibt es trotz der Bedeutung von Projekten zur Moorwiedervernässung für das regionale und globale Treibhausgasbudget nahezu keine Untersuchungen zur Zusammensetzung und Verbreitung von methanogenen und methanotrophen Gemeinschaften in degradierten wiedervernäßten, eutrophen Niedermooren. Das Ziel dieser Doktorarbeit ist es, unser Verständnis zur Reaktion der am Methanbudget beteiligten mikrobiellen Gemeinschaften auf den globalen Wandel und auf die damit einhergehenden Umweltänderungen zu verbessern. Die Arbeit untersucht daher zum einen die biogeographischen Muster methanogener Gemeinschaften und die ihnen zugrunde liegenden Umweltfaktoren auf verschiedenen räumlichen Skalen. Auf globaler Ebene wurde eine Meta-Analyse durchgeführt, die auf 94 global verteilten, öffentlichen Sequenzdatensätzen sowie den dazugehörigen Umweltdaten aus verschiedenen natürlichen Ökosystemen basiert. Hierzu gehören Böden, Seesedimente, Ästuare, marine Sedimente, hydrothermale Sedimente und Schlammvulkane. In Kombination mit einer globalen biogeographischen Karte zur Verbreitung methanogener Archaeen konnte diese Arbeit zeigen, dass biogeographische Muster von Methanogenen existieren. Terrestrische Ökosysteme zeigen zudem eine höhere Diversität als marine Ökosysteme. Ästuare, Übergangszonen zwischen marinen und terrestrischen/ limnischen Ökosystemen, weisen die größte methanogene Diversität bei jedoch vergleichsweise geringen Methanemissionen auf. Methanoculleus und Methanosaeta (Methanothrix) sind die am häufigsten nachgewiesenen Taxa in marinen Lebensräumen, während Methanoregula in terrestrischen Ökosystemen dominiert. Auf lokaler Ebene wurden in dieser Arbeit zwei wiedervernässte, eutrophe Niedermoore im Nordosten Deutschlands verglichen, das von der Ostsee beeinflusste „Hütelmoor“ und das Durchströmungsmoor „Polder Zarnekow“. Beide Moore sind durch hohe Methanemissionen infolge der Wiedervernässung charakterisiert. Einhergehend mit unterschiedlichen geochemischen Bedingungen und unterschiedlicher Nutzungshistorie weisen diese beiden wiedervernässten Standorte in ihrer Zusammensetzung unterschiedliche methanogene und methanotrophe Gemeinschaften auf lokaler Ebene auf. Zudem ist die Gruppe der Methanotrophen innerhalb der prokaryotischen Gemeinschaften jeweils unterrepräsentiert und beide Moore zeigen ein vergleichbar niedriges Verhältnis von Methanotrophen im Vergleich zu Methanogenen. Diese Arbeit liefert erste Hinweise darauf, dass die schnelle und erfolgreiche Wiederbesiedlung durch Methanogene in Kombination mit einer offenbar schlecht etablierten methanotrophen Gemeinschaft zu den erhöhten Methanflüssen in beiden Mooren nach Wiedervernässung beiträgt. Abschließend zeigt diese Arbeit, dass eine eingeschränkte Migration („dispersal limitation“) die biogeographischen Verteilungsmuster von Methanogenen in natürlichen Ökosystemen kaum beeinflusst. Stattdessen werden Vorkommen und Anpassung von methanogenen Gemeinschaften vor allem durch den selektiven Druck verschiedener Umweltbedingungen reguliert. Die Umweltparameter Salzgehalt, pH-Wert und Temperatur wurden dabei als wichtigste Faktoren identifiziert, die die Verbreitung methanogener Gemeinschaften global bzw. speziell in terrestrischen Standorten beeinflussen. Es ist daher wahrscheinlich, dass prognostizierte Klimaveränderungen wie steigende Temperatur, Änderungen der Niederschlagsmuster und zunehmende Häufigkeit von Überschwemmungsereignissen zu Änderungen in der Zusammensetzung methanogener Gemeinschaften führen, die möglicherweise auch die Methanemissionsmuster beeinflussen werden.show moreshow less

Download full text files

  • wen_diss.pdfeng
    (8382KB)

    SHA-512:925911ac50683c1208fe31cf9bba4deb7a269ba874161ffd210b547646d520dbea7d4ad4967d4c93472f8f7d2399f8c76ca5e5392248005cde5a04b5989f5717

Export metadata

Metadaten
Author details:Xi WenORCiD
URN:urn:nbn:de:kobv:517-opus4-471770
DOI:https://doi.org/10.25932/publishup-47177
translated title (German):Verteilungsmuster Methan produzierender und Methan oxidierender Mikroorganismen und deren Abhängigkeit von Umweltfaktoren in natürlichen Ökosystemen und wiedervernäßten Mooren
Supervisor(s):Susanne Liebner
Publication type:Doctoral Thesis
Language:English
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/03/09
Release date:2020/07/09
Tag:Biogeographie; Methane; Methanogene; Methanotrophe; Verteilungsmuster
biogeography; distribution pattern; methane; methanogens; methanotrophs
Number of pages:VIII, iii, 152
RVK - Regensburg classification:WF 2500, TH 4560
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.